In situ fabrication of cobalt/nickel sulfides nanohybrid based on various sulfur sources as highly efficient bifunctional electrocatalysts for overall water splitting

被引:5
作者
Li, Mengqiu [1 ]
Xu, Ze [1 ]
Li, Yuting [1 ]
Wang, Juan [1 ]
Zhong, Qin [1 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Chem Engn, Nanjing 210094, Peoples R China
来源
NANO SELECT | 2022年 / 3卷 / 01期
关键词
electrocatalyst; heterostructure; sulfur source; transition metal dichalcogenides; water splitting; NI3S2; NANOSHEETS; HYDROGEN; HETEROSTRUCTURE; PERFORMANCE; NANORODS; CATALYST; FOAM;
D O I
10.1002/nano.202100155
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Transition metal chalcogenides are attractive electrocatalysts for oxygen evolution reaction (OER) or hydrogen evolution reaction (HER) due to their natural abundance and diverse structure. Herein, nickel sulfides (Ni3S2) and nickel/cobalt sulfides nanohybrid have been in situ fabricated on nickel foam (NF) by a facile hydrothermal method with sodium sulfide (Ss), L-cysteine (Lc) or thiourea (Tu) as a sulfur source, respectively. The results show that sulfur source has a great influence on the phase structure, morphology and electrocatalytic performance of transition metal sulfides. The nickel sulfide with the sodium sulfide as a sulfur source (Ni-Ss) shows better HER and OER activity in 1 M KOH. With the Co-doping, three-dimensional honeycomb-like NiCoSs nanosheet clusters exhibits the enhanced electrocatalysis properties with overpotentials of only 168 mV at 10 mA cm(-2) for HER and 234 mV at 20 mA cm(-2) for OER, respectively. The NiCoSs shows the good bifunctional activities for overall water splitting and presents considerable stability for 24 hours. The good electrochemical activities of metal sulfides by using inorganic sodium sulfide can be attributed to the large exposed surface area and heterostructure compositions of Co9S8 and Ni3S2.
引用
收藏
页码:147 / 156
页数:10
相关论文
共 50 条
  • [31] Co9S8/MnS/MoS2 heterostructure grown in situ on Ni foam as highly efficient electrocatalysts for overall water splitting
    Yan, Ruobing
    Luan, Tao
    Liu, Zichen
    Cao, Yangyang
    Chi, Kaili
    Yang, Senhao
    Guo, Xun
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2025, 98 : 14 - 24
  • [32] Amorphous iron-nickel phosphide nanocone arrays as efficient bifunctional electrodes for overall water splitting
    Liu, Guang
    Wu, Yun
    Yao, Rui
    Zhao, Fei
    Zhao, Qiang
    Li, Jinping
    GREEN ENERGY & ENVIRONMENT, 2021, 6 (04) : 496 - 505
  • [33] Interface engineering of copper-cobalt based heterostructure as bifunctional electrocatalysts for overall water splitting
    Xu, Xiaowei
    Huang, Zhixiong
    Zhao, Cheng
    Ding, Xueyuan
    Liu, Xin
    Wang, Dayang
    Hui, Zi
    Jia, Runping
    Liu, Ying
    CERAMICS INTERNATIONAL, 2020, 46 (09) : 13125 - 13132
  • [34] Fabrication of nickel oxide decorated CNTs/GO nanohybrid: A multifunctional electrocatalyst for overall electrochemical water splitting
    Alotibi, Satam
    Khalid, Awais
    Hanna, Eddie Gazo
    Aldhafeeri, Zaid M.
    Hasan, Mudassir
    Al Haq, Tuba
    Ali, Abid
    FLATCHEM, 2024, 48
  • [35] Highly purified dicobalt phosphide nanodendrites on exfoliated graphene: In situ synthesis and as robust bifunctional electrocatalysts for overall water splitting
    Liu, Hui
    Liu, Danye
    Gu, Minyi
    Zhao, Zenghua
    Chen, Dong
    Cui, Penglei
    Xu, Lin
    Yang, Jun
    MATERIALS TODAY ENERGY, 2019, 14
  • [36] Ir-based bifunctional electrocatalysts for overall water splitting
    Chen, Lin-Wei
    Liang, Hai-Wei
    CATALYSIS SCIENCE & TECHNOLOGY, 2021, 11 (14) : 4673 - 4689
  • [37] Interface engineering of cobalt-sulfide-selenium core-shell nanostructures as bifunctional electrocatalysts toward overall water splitting†
    Shi, Zhengtian
    Qi, Xiangqian
    Zhang, Zhiyuan
    Song, Yingchao
    Zhang, Jianfa
    Guo, Chucai
    Xu, Wei
    Liu, Ken
    Zhu, Zhihong
    NANOSCALE, 2021, 13 (14) : 6890 - 6901
  • [38] 3D Porous Nickel-Cobalt Nitrides Supported on Nickel Foam as Efficient Electrocatalysts for Overall Water Splitting
    Wang, Yueqing
    Zhang, Baohua
    Pan, Wei
    Ma, Houyi
    Zhang, Jintao
    CHEMSUSCHEM, 2017, 10 (21) : 4170 - 4177
  • [39] In situ growth of volcano-like FeIr alloy on nickel foam as efficient bifunctional catalyst for overall water splitting at high current density
    Chen, Jinli
    Wang, Yamei
    Qian, Guangfu
    Yu, Tianqi
    Wang, Zhenglin
    Luo, Lin
    Shen, Fang
    Yin, Shibin
    CHEMICAL ENGINEERING JOURNAL, 2021, 421
  • [40] Amorphous FeCoNi-S as efficient bifunctional electrocatalysts for overall water splitting reaction
    He, Runze
    Wang, Chunyan
    Feng, Ligang
    CHINESE CHEMICAL LETTERS, 2023, 34 (02)