Oversaturating Liquid Interfaces with Nanoparticle-Surfactants

被引:3
作者
Wu, Xuefei [1 ]
Xue, Han [1 ]
Fink, Zachary [1 ,2 ]
Helms, Brett A. [1 ,3 ]
Ashby, Paul D. [3 ]
Omar, Ahmad K. [1 ,4 ]
Russell, Thomas P. [1 ,2 ,5 ]
机构
[1] Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA
[2] Univ Massachusetts, Polymer Sci & Engn Dept, Amherst, MA 01003 USA
[3] Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA
[4] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA
[5] Tohoku Univ, Adv Inst Mat Res AIMR, 2-1-1 Katahira,Aoba, Sendai 9808577, Japan
关键词
out-of-equilibrium assembly; nanoparticle-surfactants; in situ small-angle X-ray scattering; explosive emulsification; liquid/liquid interface; FLUID INTERFACES; LIGHT; DROPLETS; RULER; FILMS; WATER;
D O I
10.1002/anie.202403790
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Assemblies of nanoparticles at liquid interfaces hold promise as dynamic "active" systems when there are convenient methods to drive the system out of equilibrium via crowding. To this end, we show that oversaturated assemblies of charged nanoparticles can be realized and held in that state with an external electric field. Upon removal of the field, strong interparticle repulsive forces cause a high in-plane electrostatic pressure that is released in an explosive emulsification. We quantify the packing of the assembly as it is driven into the oversaturated state under an applied electric field. Physiochemical conditions substantially affect the intensity of the induced explosive emulsification, underscoring the crucial role of interparticle electrostatic repulsion. Explore the intriguing world of nanoparticle-surfactants at liquid interfaces. This study delves into how external electric fields can form and influence nanoparticle assemblies, leading to explosive emulsification behavior. It unveils a fascinating interplay between electrostatic forces and physiochemical conditions, offering a glimpse into the untapped possibilities of nanotechnology.+ image
引用
收藏
页数:7
相关论文
共 63 条
  • [1] Field-Induced Assembly and Propulsion of Colloids
    Al Harraq, Ahmed
    Choudhury, Brishty Deb
    Bharti, Bhuvnesh
    [J]. LANGMUIR, 2022, 38 (10) : 3001 - 3016
  • [2] Aggregation dynamics of active rotating particles in dense passive media
    Aragones, Juan L.
    Steimel, Joshua P.
    Alexander-Katz, Alfredo
    [J]. SOFT MATTER, 2019, 15 (19) : 3929 - 3937
  • [3] Motile behaviour of droplets in lipid systems
    Babu, Dhanya
    Katsonis, Nathalie
    Lancia, Federico
    Plamont, Remi
    Ryabchun, Alexander
    [J]. NATURE REVIEWS CHEMISTRY, 2022, 6 (06) : 377 - 388
  • [4] Interfacial Localization and Voltage-Tunable Arrays of Charged Nanoparticles
    Bera, Mrinal K.
    Chan, Henry
    Moyano, Daniel F.
    Yu, Hao
    Tatur, Sabina
    Amoanu, Daniel
    Bu, Wei
    Rotello, Vincent M.
    Meron, Mati
    Kral, Petr
    Lin, Binhua
    Schlossman, Mark L.
    [J]. NANO LETTERS, 2014, 14 (12) : 6816 - 6822
  • [5] Assembly of Reconfigurable Colloidal Structures by Multidirectional Field-Induced Interactions
    Bharti, Bhuvnesh
    Velev, Orlin D.
    [J]. LANGMUIR, 2015, 31 (29) : 7897 - 7908
  • [6] Self-assembly of nanoparticles at interfaces
    Boeker, Alexander
    He, Jinbo
    Emrick, Todd
    Russell, Thomas P.
    [J]. SOFT MATTER, 2007, 3 (10) : 1231 - 1248
  • [7] Hybrid films of reduced graphene oxide with noble metal nanoparticles generated at a liquid/liquid interface for applications in catalysis
    Bramhaiah, K.
    John, Neena S.
    [J]. RSC ADVANCES, 2013, 3 (21): : 7765 - 7773
  • [8] Heavy Metal Sensing Using Self-Assembled Nanoparticles at a Liquid-Liquid Interface
    Cecchini, Michael P.
    Turek, Vladimir A.
    Demetriadou, Angela
    Britovsek, George
    Welton, Tom
    Kornyshev, Alexei A.
    Wilton-Ely, James D. E. T.
    Edel, Joshua B.
    [J]. ADVANCED OPTICAL MATERIALS, 2014, 2 (10): : 966 - 977
  • [9] Fine-Tuning Nanoparticle Packing at Water-Oil Interfaces Using Ionic Strength
    Chai, Yu
    Lukito, Alysia
    Jiang, Yufeng
    Ashby, Paul D.
    Russell, Thomas P.
    [J]. NANO LETTERS, 2017, 17 (10) : 6453 - 6457
  • [10] Cheng Q., 2022, SUPRAMOL MAT, V1