Geometry over algebras

被引:0
|
作者
Botos, Hugo Cattarucci [1 ]
机构
[1] Univ Sao Paulo, Dept Matemat Aplicada, IME, Sao Paulo, Brazil
基金
巴西圣保罗研究基金会;
关键词
D O I
10.1016/j.difgeo.2024.102134
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study geometric structures arising from Hermitian forms on linear spaces over real algebras beyond the division ones. Our focus is on the dual numbers, the split -complex numbers, and the split-quaternions. The corresponding geometric structures are employed to describe the spaces of oriented geodesics in the hyperbolic plane, the Euclidean plane, and the round 2 -sphere. We also introduce a simple and natural geometric transition between these spaces. Finally, we present a projective model for the hyperbolic bidisc, that is, the Riemannian product of two hyperbolic discs. (c) 2024 Elsevier B.V. All rights reserved.
引用
收藏
页数:25
相关论文
共 50 条