Atomic force microscopy 3D structural reconstruction of individual particles in the study of amyloid protein assemblies

被引:2
作者
Chitty, Claudia [1 ]
Kuliga, Kinga [1 ]
Xue, Wei-Feng [1 ]
机构
[1] Univ Kent, Sch Biosci, Div Nat Sci, Canterbury CT2 7NJ, England
基金
英国生物技术与生命科学研究理事会; 英国工程与自然科学研究理事会;
关键词
CRYO-EM STRUCTURES; PRION STRAINS; FILAMENTS; FIBRIL; DYNAMICS; TOOL; AFM;
D O I
10.1042/BST20230857
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Recent developments in atomic force microscopy (AFM) image analysis have made three-dimensional (3D) structural reconstruction of individual particles observed on 2D AFM height images a reality. Here, we review the emerging contact point reconstruction AFM (CPR-AFM) methodology and its application in 3D reconstruction of individual helical amyloid filaments in the context of the challenges presented by the structural analysis of highly polymorphous and heterogeneous amyloid protein structures. How individual particle -level structural analysis can contribute to resolving the amyloid polymorph structure-function relationships, the environmental triggers leading to protein misfolding and aggregation into amyloid species, the influences by the conditions or minor fluctuations in the initial monomeric protein structure on the speed of amyloid fibril formation, and the extent of the different types of amyloid species that can be formed, are discussed. Future perspectives in the capabilities of AFM-based 3D structural reconstruction methodology exploiting synergies with other recent AFM technology advances are also discussed to highlight the potential of AFM as an emergent general, accessible and multimodal structural biology tool for the analysis of individual biomolecules.
引用
收藏
页码:761 / 771
页数:11
相关论文
共 75 条
  • [1] Amyloid Polymorphism in the Protein Folding and Aggregation Energy Landscape
    Adamcik, Jozef
    Mezzenga, Raffaele
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (28) : 8370 - 8382
  • [2] Al-Hilaly Youssra K, 2023, Methods Mol Biol, V2551, P163, DOI 10.1007/978-1-0716-2597-2_12
  • [3] AFM: a versatile tool in biophysics
    Alessandrini, A
    Facci, P
    [J]. MEASUREMENT SCIENCE AND TECHNOLOGY, 2005, 16 (06) : R65 - R92
  • [4] BioAFMviewer: An interactive interface for simulated AFM scanning of biomolecular structures and dynamics
    Amyot, Romain
    Flechsig, Holger
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2020, 16 (11)
  • [5] High-Speed AFM and Applications to Biomolecular Systems
    Ando, Toshio
    Uchihashi, Takayuki
    Kodera, Noriyuki
    [J]. ANNUAL REVIEW OF BIOPHYSICS, VOL 42, 2013, 42 : 393 - 414
  • [6] High resolution atomic force microscopy of double-stranded RNA
    Ares, Pablo
    Eugenia Fuentes-Perez, Maria
    Herrero-Galan, Elias
    Valpuesta, Jose M.
    Gil, Adriana
    Gomez-Herrero, Julio
    Moreno-Herrero, Fernando
    [J]. NANOSCALE, 2016, 8 (23) : 11818 - 11826
  • [7] Aubrey L.D., 2023, BIORXIV, V2007, P2014, DOI DOI 10.1101/2023.07.14.549001
  • [8] Quantification of amyloid fibril polymorphism by nano-morphometry reveals the individuality of filament assembly
    Aubrey, Liam D.
    Blakeman, Ben J. F.
    Lutter, Liisa
    Serpell, Christopher J.
    Tuite, Mick F.
    Serpell, Louise C.
    Xue, Wei-Feng
    [J]. COMMUNICATIONS CHEMISTRY, 2020, 3 (01)
  • [9] Imaging and manipulation of single viruses by atomic force microscopy
    Baclayon, M.
    Wuite, G. J. L.
    Roos, W. H.
    [J]. SOFT MATTER, 2010, 6 (21) : 5273 - 5285
  • [10] The [PSI+] Prion Exists as a Dynamic Cloud of Variants
    Bateman, David A.
    Wickner, Reed B.
    [J]. PLOS GENETICS, 2013, 9 (01):