Complete Mitochondrial Genome of the Eggplant Fruit and Shoot Borer, Leucinodes orbonalis Guenée (Lepidoptera: Crambidae), and Comparison with Other Pyraloid Moths

被引:0
作者
Despabiladeras, Joshua B. [1 ]
Bautista, Ma. Anita M. [1 ]
机构
[1] Univ Philippines Diliman, Natl Inst Mol Biol & Biotechnol, Coll Sci, Funct Genom Lab, Quezon City 1101, Philippines
关键词
eggplant fruit and shoot borer; whole genome sequencing; mitochondrial genome; pest genomics; RNA PUNCTUATION MODEL; PHYLOGENETIC ANALYSIS; PYRALIDAE; SEQUENCE; PERFORMANCE; DROSOPHILA; INFERENCE; MEDINALIS; SELECTION; ALIGNMENT;
D O I
10.3390/insects15040220
中图分类号
Q96 [昆虫学];
学科分类号
摘要
The eggplant fruit and shoot borer (EFSB) (Leucinodes orbonalis Guen & eacute;e) is a devastating lepidopteran pest of eggplant (Solanum melongena L.) in the Philippines. Management of an insect pest like the EFSB requires an understanding of its biology, evolution, and adaptations. Genomic resources provide a starting point for understanding EFSB biology, as the resources can be used for phylogenetics and population structure studies. To date, genomic resources are scarce for EFSB; thus, this study generated its complete mitochondrial genome (mitogenome). The circular mitogenome is 15,244 bp-long. It contains 37 genes, namely 13 protein-coding, 22 tRNA, and 2 rRNA genes, and has conserved noncoding regions, motifs, and gene syntenies characteristic of lepidopteran mitogenomes. Some protein-coding genes start and end with non-canonical codons. The tRNA genes exhibit a conserved cloverleaf structure, with the exception in trnS1. Partitioned phylogenetic analysis using 72 pyraloids generated highly supported maximum likelihood and Bayesian inference trees revealing expected basal splits between Crambidae and Pyralidae, and Spilomelinae and Pyraustinae. Spilomelinae was recovered to be paraphyletic, with the EFSB robustly placed before the split of Spilomelinae and Pyraustinae. Overall, the EFSB mitogenome resource will be useful for delineations within Spilomelinae and population structure analysis.
引用
收藏
页数:22
相关论文
共 90 条
  • [1] The complete mitochondrial genome of the lesser aspen webworm moth Meroptera pravella (Insecta: Lepidoptera: Pyralidae)
    Ali, Muna B.
    Almaden, Jarina
    Balchan, Neil R.
    Clendinnen, Emma M. Bennici
    Bhasin, Jasmine
    Brown, Calvin S.
    Carlson, Hunter R.
    Chavda, Aman S.
    Deckert, Jennine
    Eastman, Triston G.
    Friesen, Jayelle R.
    Funk, Brielle E.
    Hahn, Melissa M.
    Hallock, Dara M.
    Haverstick, Ashley
    Huang, Lisa
    King, Ryan D.
    Klassen, Megan R.
    Luong, Keith
    Moskal, Christopher
    Nash, Mikyla T.
    Nieckarz, Richard
    Nowicki, Adam K.
    Osemeke, Ruth C.
    Otisi, Jennifer
    Panchendrabose, Kapilan
    Peters, Melissa
    Peterson, Colleen S.
    Smith, Ashley E.
    Tang, Gilman Y.
    Tse, Joanna Y.
    Unrau, Sarah L.
    Villegas, Mira A.
    Marcus, Jeffrey M.
    [J]. MITOCHONDRIAL DNA PART B-RESOURCES, 2017, 2 (01): : 344 - 346
  • [2] Mansonia spp. population genetics based on mitochondrion whole-genome sequencing alongside the Madeira River near Porto Velho, Rondonia, Brazil
    Alonso, Diego Peres
    Alvarez, Marcus Vinicius Niz
    Amorim, Jandui Almeida
    De Sa, Ivy Luizi Rodrigues
    De Carvalho, Dario Pires
    Ribeiro, Kaio Augusto Nabas
    Ribolla, Paulo Eduardo Martins
    Sallum, Maria Anice Mureb
    [J]. INFECTION GENETICS AND EVOLUTION, 2022, 103
  • [3] Ayres DL, 2012, SYST BIOL, V61, P170, DOI [10.1093/sysbio/syr100, 10.1093/sysbio/sys029]
  • [4] Complete sequences of mitochondria genomes of Aedes aegypti and Culex quinquefasciatus and comparative analysis of mitochondrial DNA fragments inserted in the nuclear genomes
    Behura, Susanta K.
    Lobo, Neil F.
    Haas, Brian
    deBruyn, Becky
    Lovin, Diane D.
    Shumway, Martin F.
    Puiu, Daniela
    Romero-Severson, Jeanne
    Nene, Vishvanath
    Severson, David W.
    [J]. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY, 2011, 41 (10) : 770 - 777
  • [5] MITOS: Improved de novo metazoan mitochondrial genome annotation
    Bernt, Matthias
    Donath, Alexander
    Juehling, Frank
    Externbrink, Fabian
    Florentz, Catherine
    Fritzsch, Guido
    Puetz, Joern
    Middendorf, Martin
    Stadler, Peter F.
    [J]. MOLECULAR PHYLOGENETICS AND EVOLUTION, 2013, 69 (02) : 313 - 319
  • [6] Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis
    Castresana, J
    [J]. MOLECULAR BIOLOGY AND EVOLUTION, 2000, 17 (04) : 540 - 552
  • [7] Contrasting rates of mitochondrial molecular evolution in parasitic diptera and hymenoptera
    Castro, LR
    Austin, AD
    Dowton, M
    [J]. MOLECULAR BIOLOGY AND EVOLUTION, 2002, 19 (07) : 1100 - 1113
  • [8] Characterization of the Complete Mitochondrial Genomes of Cnaphalocrocis medinalis and Chilo suppressalis (Lepidoptera: Pyralidae)
    Chai, Huan-Na
    Du, Yu-Zhou
    Zhai, Bao-Ping
    [J]. INTERNATIONAL JOURNAL OF BIOLOGICAL SCIENCES, 2012, 8 (04): : 561 - 579
  • [9] Mitochondria: Dynamic organelles in disease, aging, and development
    Chan, David C.
    [J]. CELL, 2006, 125 (07) : 1241 - 1252
  • [10] tRNAscan-SE 2.0: improved detection and functional classification of transfer RNA genes
    Chan, Patricia P.
    Lin, Brian Y.
    Mak, Allysia J.
    Lowe, Todd M.
    [J]. NUCLEIC ACIDS RESEARCH, 2021, 49 (16) : 9077 - 9096