Concentration of solutions for non-autonomous double-phase problems with lack of compactness

被引:0
作者
Zhang, Weiqiang [1 ]
Zuo, Jiabin [2 ]
Radulescu, Vicentiu D. [3 ,4 ,5 ,6 ,7 ]
机构
[1] Ningxia Univ, Sch Math & Stat, Yinchuan 750021, Ningxia, Peoples R China
[2] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Peoples R China
[3] AGH Univ Krakow, Fac Appl Math, Al Mickiewicza 30, PL-30059 Krakow, Poland
[4] Brno Univ Technol, Fac Elect Engn & Commun, Dept Math, Technicka 2848-8, Brno 61600, Czech Republic
[5] Univ Craiova, Dept Math, St AI Cuza 13, Craiova 200585, Romania
[6] Romanian Acad, Sim Stoilow Inst Math, Calea Grivitei 21, Bucharest 010702, Romania
[7] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2024年 / 75卷 / 04期
关键词
Double-phase operator; Lusternik-Schnirelmann theory; Penalization methods; Concentrating phenomenon; ELLIPTIC-EQUATIONS; POSITIVE SOLUTIONS; WEAK SOLUTIONS; REGULARITY; MULTIPLICITY; EXISTENCE; MINIMIZERS; INTEGRALS; CALCULUS; PATTERNS;
D O I
10.1007/s00033-024-02290-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The present paper is devoted to the study of the following double-phase equation -div(|del u|p-2 del u+mu epsilon(x)|del u|q-2 del u)+V epsilon(x)(|u|p-2u+mu epsilon(x)|u|q-2u)=f(u)inRN,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} -\text {div}(|\nabla u|<^>{p-2}\nabla u+\mu _{\varepsilon }(x)|\nabla u|<^>{q-2}\nabla u)+V_{\varepsilon }(x)(|u|<^>{p-2}u+\mu _{\varepsilon }(x)|u|<^>{q-2}u)=f(u)\quad \text{ in }\quad \mathbb {R}<^>{N}, \end{aligned}$$\end{document}where N >= 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\ge 2$$\end{document}, 1<p<q<N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1<p<q<N$$\end{document}, q<p & lowast;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q<p<^>{*}$$\end{document} with p & lowast;=NpN-p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p<^>{*}=\frac{Np}{N-p}$$\end{document}, mu:RN -> R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu :\mathbb {R}<^>{N}\rightarrow \mathbb {R}$$\end{document} is a continuous non-negative function, mu epsilon(x)=mu(epsilon x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _{\varepsilon }(x)=\mu (\varepsilon x)$$\end{document}, V:RN -> R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V:\mathbb {R}<^>{N}\rightarrow \mathbb {R}$$\end{document} is a positive potential satisfying a local minimum condition, V epsilon(x)=V(epsilon x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_{{{\,\mathrm{\varepsilon }\,}}}(x)=V({{\,\mathrm{\varepsilon }\,}}x)$$\end{document}, and the nonlinearity f:R -> R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f:\mathbb {R}\rightarrow \mathbb {R}$$\end{document} is a continuous function with subcritical growth. Under natural assumptions on mu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document}, V and f, by using penalization methods and Lusternik-Schnirelmann theory we first establish the multiplicity of solutions, and then, we obtain concentration properties of solutions.
引用
收藏
页数:30
相关论文
共 53 条
  • [1] Adams R.A, 1975, Sobolev Spaces
  • [2] Existence and concentration of positive solutions for a logarithmic Schrodinger equation via penalizationmethod
    Alves, Claudianor O.
    Ji, Chao
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2020, 59 (01)
  • [3] Alves CO, 2011, ADV NONLINEAR STUD, V11, P265
  • [4] The nonlinear (p, q)-Schrodinger equation with a general nonlinearity: Existence and concentration
    Ambrosio, Vincenzo
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2023, 178 : 141 - 184
  • [5] A multiplicity result for a (p, q)-Schrodinger-Kirchhoff type equation
    Ambrosio, Vincenzo
    Isernia, Teresa
    [J]. ANNALI DI MATEMATICA PURA ED APPLICATA, 2022, 201 (02) : 943 - 984
  • [6] Ambrosio V, 2021, Z ANGEW MATH PHYS, V72, DOI 10.1007/s00033-020-01466-7
  • [7] Fractional double-phase patterns: concentration and multiplicity of solutions
    Ambrosio, Vincenzo
    Radulescu, Vicentiu D.
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2020, 142 : 101 - 145
  • [8] Arora R, 2022, Arxiv, DOI arXiv:2210.14282
  • [9] Double phase transonic flow problems with variable growth: nonlinear patterns and stationary waves
    Bahrouni, Anouar
    Radulescu, Vicentiu D.
    Repovs, Dusan D.
    [J]. NONLINEARITY, 2019, 32 (07) : 2481 - 2495
  • [10] Solitons in several space dimensions: Derrick's problem and infinitely many solutions
    Benci, V
    D'Avenia, P
    Fortunato, D
    Pisani, L
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2000, 154 (04) : 297 - 324