Novel design of in-situ hydrogen sorption/storage integrated enhanced hydrogen production in supercritical CO2 gasification, air gasification, and steam gasification from biomass

被引:8
|
作者
Yang, Tiebing [1 ]
Dou, Binlin [1 ]
Zhang, Hua [1 ]
Wu, Kai [1 ]
Luo, Ning [1 ]
Chen, Haisheng [2 ]
Xu, Yujie [2 ]
Li, Wei [3 ]
Wu, Chunfei [4 ]
机构
[1] Univ Shanghai Sci & Technol, Sch Energy & Power Engn, Shanghai Key Lab Multiphase Flow & Heat Transfer P, Shanghai 200093, Peoples R China
[2] Chinese Acad Sci, Inst Engn Thermophys, Beijing 100190, Peoples R China
[3] Zhejiang Univ, Dept Energy Engn, Hangzhou 310027, Peoples R China
[4] Queens Univ Belfast, Sch Chem & Chem Engn, Belfast BT7 1NN, North Ireland
关键词
In-situ hydrogen sorption/storage in WGS; reaction; SupercriticalCO2 gasification of biomass; Air gasification of biomass; Steam gasification of biomass; Enhanced hydrogen production; EXERGY ANALYSIS; ASPEN PLUS; ENERGY; PYROLYSIS;
D O I
10.1016/j.cej.2024.150029
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The novel process on in-situ hydrogen sorption/storage during water gas shift (WGS) was proposed and the enhanced hydrogen production in supercritical CO2 gasification (CG), air gasification (AG), and steam gasification (SG) from biomass was integrated. Pure hydrogen was obtained by regeneration from the material (Mg2Ni) used for in-situ H2 absorption during WGS. The effects of temperature, pressure, steam-to-carbon (S/C) ratio, and the quantity of adsorbent for the enhanced hydrogen production with in-situ hydrogen sorption/ storage were determined. When Mg2Ni was added as the in-situ H2 adsorbent, the hydrogen conversion in WGS reaction was improved. The increase of temperature reduced the hydrogen yield. SG presented the highest hydrogen yield and AG showed the highest hydrogen conversion. The steam-to-carbon (S/C) had a positive effect on the hydrogen production for all the processes and the methanation reaction was greatly inhibited by AG. The energy efficiencies reached 22.98 %, 26.31 %, and 27.149.51 %, and the exergy efficiencies reached 61.66 %, 64.19 %, and 83.62 %, for CG, AG and SG, respectively. The system energy can be supplied by in-situ hydrogen sorption/storage and the energy requirement order was SG > CG > AG.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Enhanced hydrogen production from catalytic biomass gasification with in-situ CO2 capture
    Wang, Jianqiao
    Kang, Dongrui
    Shen, Boxiong
    Sun, Hongman
    Wu, Chunfei
    ENVIRONMENTAL POLLUTION, 2020, 267
  • [2] Potassium catalytic hydrogen production in sorption enhanced gasification of biomass with steam
    Zhang, Yang
    Gong, Xun
    Zhang, Biao
    Liu, Wenqiang
    Xu, Minghou
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (09) : 4234 - 4243
  • [3] Novel Hydrogen and Biomethanol Production From Pinecone Biomass Using an Integrated Steam Gasification System
    Turgut, Hilal Sayhan Akci
    Dincer, Ibrahim
    ENERGY CONVERSION AND MANAGEMENT, 2024, 310
  • [4] Hydrogen production and storage as ammonia by supercritical water gasification of biomass
    Ortiz, F. J. Gutierrez
    Lopez-Guirao, F.
    ENERGY CONVERSION AND MANAGEMENT, 2025, 332
  • [5] Exergoeconomics of hydrogen production from biomass air-steam gasification with methane co-feeding
    Nakyai, Teeranun
    Authayanun, Suthida
    Patcharavorachot, Yaneeporn
    Arpornwichanop, Amornchai
    Assabumrungrat, Suttichai
    Saebea, Dang
    ENERGY CONVERSION AND MANAGEMENT, 2017, 140 : 228 - 239
  • [6] High-purity hydrogen production with in situ CO2 capture based on biomass gasification
    Doranehgard, Mohammad Hossein
    Samadyar, Hossein
    Mesbah, Mohammad
    Haratipour, Pouya
    Samiezade, Saman
    FUEL, 2017, 202 : 29 - 35
  • [7] A review on catalytic hydrogen production from supercritical water gasification of biomass
    Liu, Zhigang
    Yang, Youwen
    Chen, Yunan
    Yi, Lei
    Guo, Liejin
    Chao, Yun
    Chen, Huiming
    BIOMASS & BIOENERGY, 2024, 190
  • [8] Hydrogen Production from Biomass via Supercritical Water Gasification
    Demirbas, A.
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2010, 32 (14) : 1342 - 1354
  • [9] Hydrogen production from biomass steam gasification: Experiment and simulation
    Luo, Yun
    Chen, Juan
    CHEMICAL ENGINEERING SCIENCE, 2024, 292
  • [10] Hydrogen production from algal biomass via steam gasification
    Duman, Gozde
    Uddin, Md Azhar
    Yanik, Jale
    BIORESOURCE TECHNOLOGY, 2014, 166 : 24 - 30