Novel design of in-situ hydrogen sorption/storage integrated enhanced hydrogen production in supercritical CO2 gasification, air gasification, and steam gasification from biomass

被引:8
|
作者
Yang, Tiebing [1 ]
Dou, Binlin [1 ]
Zhang, Hua [1 ]
Wu, Kai [1 ]
Luo, Ning [1 ]
Chen, Haisheng [2 ]
Xu, Yujie [2 ]
Li, Wei [3 ]
Wu, Chunfei [4 ]
机构
[1] Univ Shanghai Sci & Technol, Sch Energy & Power Engn, Shanghai Key Lab Multiphase Flow & Heat Transfer P, Shanghai 200093, Peoples R China
[2] Chinese Acad Sci, Inst Engn Thermophys, Beijing 100190, Peoples R China
[3] Zhejiang Univ, Dept Energy Engn, Hangzhou 310027, Peoples R China
[4] Queens Univ Belfast, Sch Chem & Chem Engn, Belfast BT7 1NN, North Ireland
关键词
In-situ hydrogen sorption/storage in WGS; reaction; SupercriticalCO2 gasification of biomass; Air gasification of biomass; Steam gasification of biomass; Enhanced hydrogen production; EXERGY ANALYSIS; ASPEN PLUS; ENERGY; PYROLYSIS;
D O I
10.1016/j.cej.2024.150029
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The novel process on in-situ hydrogen sorption/storage during water gas shift (WGS) was proposed and the enhanced hydrogen production in supercritical CO2 gasification (CG), air gasification (AG), and steam gasification (SG) from biomass was integrated. Pure hydrogen was obtained by regeneration from the material (Mg2Ni) used for in-situ H2 absorption during WGS. The effects of temperature, pressure, steam-to-carbon (S/C) ratio, and the quantity of adsorbent for the enhanced hydrogen production with in-situ hydrogen sorption/ storage were determined. When Mg2Ni was added as the in-situ H2 adsorbent, the hydrogen conversion in WGS reaction was improved. The increase of temperature reduced the hydrogen yield. SG presented the highest hydrogen yield and AG showed the highest hydrogen conversion. The steam-to-carbon (S/C) had a positive effect on the hydrogen production for all the processes and the methanation reaction was greatly inhibited by AG. The energy efficiencies reached 22.98 %, 26.31 %, and 27.149.51 %, and the exergy efficiencies reached 61.66 %, 64.19 %, and 83.62 %, for CG, AG and SG, respectively. The system energy can be supplied by in-situ hydrogen sorption/storage and the energy requirement order was SG > CG > AG.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Novel design of in-situ hydrogen sorption/storage integrated enhanced hydrogen production in supercritical CO2 gasification, air gasification, and steam gasification from biomass
    Yang, Tiebing
    Dou, Binlin
    Zhang, Hua
    Wu, Kai
    Luo, Ning
    Chen, Haisheng
    Xu, Yujie
    Li, Wei
    Wu, Chunfei
    Chemical Engineering Journal, 2024, 485
  • [2] Enhanced hydrogen production from catalytic biomass gasification with in-situ CO2 capture
    Wang, Jianqiao
    Kang, Dongrui
    Shen, Boxiong
    Sun, Hongman
    Wu, Chunfei
    ENVIRONMENTAL POLLUTION, 2020, 267
  • [3] Potassium catalytic hydrogen production in sorption enhanced gasification of biomass with steam
    Zhang, Yang
    Gong, Xun
    Zhang, Biao
    Liu, Wenqiang
    Xu, Minghou
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (09) : 4234 - 4243
  • [4] Hydrogen production in steam gasification of biomass with CaO as a CO2 absorbent
    Wei, Ligang
    Xu, Shaoping
    Liu, Jingang
    Liu, Changhou
    Liu, Shuqin
    ENERGY & FUELS, 2008, 22 (03) : 1997 - 2004
  • [5] Sorbent enhanced hydrogen production from steam gasification of coal integrated with CO2 capture
    Sedghkerdar, Mohammad Hashem
    Mostafavi, Ehsan
    Mahinpey, Nader
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (30) : 17001 - 17008
  • [6] Hydrogen production from woody biomass by steam gasification using a CO2 sorbent
    Hanaoka, T
    Yoshida, T
    Fujimoto, S
    Kamei, K
    Harada, M
    Suzuki, Y
    Hatano, H
    Yokoyama, S
    Minowa, T
    BIOMASS & BIOENERGY, 2005, 28 (01): : 63 - 68
  • [7] Biomass/coal steam co-gasification integrated with in-situ CO2 capture
    Masnadi, Mohammad S.
    Grace, John R.
    Bi, Xiaotao T.
    Ellis, Naoko
    Lim, C. Jim
    Butler, James W.
    ENERGY, 2015, 83 : 326 - 336
  • [8] Hydrogen from biomass by steam gasification
    Rapagna, S
    Foscolo, PU
    Kiennemann, A
    HYDROGEN ENERGY PROGRESS XI, VOLS 1-3, 1996, : 901 - 906
  • [9] Hydrogen production and storage as ammonia by supercritical water gasification of biomass
    Ortiz, F. J. Gutierrez
    Lopez-Guirao, F.
    ENERGY CONVERSION AND MANAGEMENT, 2025, 332
  • [10] Enhanced hydrogen production from biomass gasification by in-situ CO2 capture with Ni/Ca-based catalysts
    Quan, Cui
    Wang, Mingchen
    Gao, Ningbo
    Yang, Tianhua
    Fan, Xiaolei
    Miskolczi, Norbert
    BIOMASS & BIOENERGY, 2024, 182