Hydrogen bonds of a water molecule in the second coordination sphere of amino acid metal complexes: influence of amino acid types on different complex geometries

被引:1
作者
Zrilic, S. S. [1 ]
Zivkovic, J. M. [1 ]
Zaric, S. D. [2 ]
机构
[1] Fac Chem, Innovat Ctr, Belgrade, Serbia
[2] Univ Belgrade, Fac Chem, Belgrade, Serbia
关键词
Non-covalent interactions; hydrogen bonds; amino acids; metal complexes; density functional theory (DFT); ION; KINETICS;
D O I
10.1080/00958972.2024.2326898
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Quantum chemical calculations at the M06L-GD3/def2-TZVPP level were done to investigate hydrogen bonds between amino acid metal complexes and a free water molecule. Octahedral nickel(II) and square planar palladium(II) complexes of glycine, cysteine, phenylalanine, and serine with different charges of metal complexes (+1, 0, and -1) were investigated. The following hydrogen bonds were considered: NH/O (amino acid is a H-donor), O1/HO (coordinated O1 oxygen from amino acid is a H-acceptor), and O2/HO (non-coordinated O2 oxygen from amino acid is a H-acceptor). Amino acid type has a small influence on interaction energies, both for octahedral nickel(II) and square planar palladium(II) complexes. The influence is the largest for NH/O and the smallest for O2/HO hydrogen bonds. For NH/O interaction, palladium(II) complexes showed stronger hydrogen bonds than nickel(II), up to -11.8 kcal mol(-1) for singly positively charged complexes. Nickel(II) complexes demonstrated higher O1/HO hydrogen bond strength than palladium(II) with interaction energies up to -8.9 kcal mol(-1) for singly negative complexes. With up to -9.0 kcal mol(-1) interaction energy for singly negative complexes, O2/HO interactions were also stronger for nickel(II) complexes than palladium(II). [GRAPHICS]
引用
收藏
页码:825 / 842
页数:18
相关论文
共 37 条
  • [21] Water: new aspect of hydrogen bonding in the solid state
    Milovanovic, Milan R.
    Stankovic, Ivana M.
    Zivkovic, Jelena M.
    Ninkovic, Dragan B.
    Hall, Michael B.
    Zaric, Snezana D.
    [J]. IUCRJ, 2022, 9 : 639 - 647
  • [22] Metallodrugs in Medicinal Inorganic Chemistry
    Mjos, Katja Dralle
    Orvig, Chris
    [J]. CHEMICAL REVIEWS, 2014, 114 (08) : 4540 - 4563
  • [23] ''Strong'' hydrogen bonds in chemistry and biology
    Perrin, CL
    Nielson, JB
    [J]. ANNUAL REVIEW OF PHYSICAL CHEMISTRY, 1997, 48 : 511 - 544
  • [24] Synthesis, spectral and antimicrobial studies of amino acid derivative Schiff base metal (Co, Mn, Cu, and Cd) complexes
    Pervaiz, Muhammad
    Ahmad, Ikram
    Yousaf, Muhammad
    Kirn, Shamaila
    Munawar, Asima
    Saeed, Zohaib
    Adnan, Ahmad
    Gulzar, Tahsin
    Kamal, Tahseen
    Ahmad, Awais
    Rashid, Ayoub
    [J]. SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2019, 206 : 642 - 649
  • [25] SYNTHESIS, GEOMETRICAL AND ABSOLUTE-CONFIGURATION OF THE TRIS(S-ARGININE)COBALT(III) TRINITRATE ISOMERS AND SYNTHESIS AND MOLECULAR-STRUCTURE OF (-)589-ANTI(N)-DELTA-CIS(N),CIS(O)-LAMBDA-CIS(N),CIS(O)-DI-MU-HYDROXO-TETRAKIS(S-ARGININE)DICOBALT(III) TETRANITRATE TETRAHYDRATE
    RADIVOJSA, PN
    JURANIC, N
    CELAP, MB
    TORIUMI, K
    SAITO, K
    [J]. POLYHEDRON, 1991, 10 (23-24) : 2717 - 2724
  • [26] Mechanism of the reactions of ruthenium(II) polypyridyl complexes with thiourea, sulfur-containing amino acids and nitrogen-containing heterocycles
    Rilak, Ana
    Puchta, Ralph
    Bugarcic, Zivadin D.
    [J]. POLYHEDRON, 2015, 91 : 73 - 83
  • [27] Binding Mechanisms in Supramolecular Complexes
    Schneider, Hans-Joerg
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2009, 48 (22) : 3924 - 3977
  • [28] Selvaganapathy M., 2016, J. Chem. Biol. Ther, V1, P108, DOI [DOI 10.4172/2572-0406.1000108, 10.4172/25720406.1000108]
  • [29] Thompson K.H., 2011, ENCY INORGANIC CHEM
  • [30] Hydrogen Bonds and Life in the Universe
    Vladilo, Giovanni
    Hassanali, Ali
    [J]. LIFE-BASEL, 2018, 8 (01):