Context-aware adaptive network for UDA semantic segmentation

被引:0
作者
Yuan, Yu [1 ]
Shi, Jinlong [1 ]
Shu, Xin [2 ]
Qian, Qiang [1 ]
Song, Yunna [1 ]
Ou, Zhen [1 ]
Xu, Dan [1 ]
Zuo, Xin [1 ]
Yu, Yuecheng [1 ]
Sun, Yunhan [2 ]
机构
[1] Jiangsu Univ Sci & Technol, Sch Comp, Zhenjiang 212003, Peoples R China
[2] State Key Lab Novel Software Technol, Nanjing 210008, Peoples R China
关键词
Semantic segmentation; Unsupervised domain adaptation(UDA); Image mix; Contextual Information;
D O I
10.1007/s00530-024-01397-7
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Unsupervised Domain Adaptation (UDA) plays a pivotal role in enhancing the segmentation performance of models in the target domain by mitigating the domain shift between the source and target domains. However, Existing UDA image mix methods often overlook the contextual association between classes, limiting the segmentation capability of the model. To address this issue, we propose the context-aware adaptive network that enhances the model's perception of contextual association information and maintains the contextual associations between different classes in mixed images, thereby improving the adaptability of the model. Firstly, we design a image mix strategy based on dynamic class correlation called DCCMix that constructs class correlation meta groups to preserve the contextual associations between different classes. Simultaneously, DCCMix dynamically adjusts the class proportion of the source domain within the mixed domain to gradually align with the distribution of the target domain, thereby improving training effectiveness. Secondly, the feature-wise fusion module and contextual feature-aware module are designed to better perceive contextual information of images and alleviate the issue of information loss during the feature extraction. Finally, we propose an adaptive class-edge weight to strengthen the segmentation ability of edge pixels in the model. Experimental results demonstrate that our proposed method achieves the mloU of 63.2% and 69.8% on two UDA benchmark tasks: SYNTHIA ->\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rightarrow$$\end{document} Cityscapes and GTA ->\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rightarrow$$\end{document} Cityscapes respectively. The code is available at https://github.com/yuheyuan/CAAN.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Context-Aware Enhanced Virtual Try-On Network with fabric adaptive registration
    Tong, Shuo
    Liu, Han
    Guo, Runyuan
    Wang, Wenqing
    Liu, Ding
    VISUAL COMPUTER, 2025, 41 (03) : 1435 - 1451
  • [22] A context-aware semantic modeling framework for efficient image retrieval
    Arun, K. S.
    Govindan, V. K.
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2017, 8 (04) : 1259 - 1285
  • [23] A context-aware semantic modeling framework for efficient image retrieval
    K. S. Arun
    V. K. Govindan
    International Journal of Machine Learning and Cybernetics, 2017, 8 : 1259 - 1285
  • [24] HCNet: Hierarchical Context Network for Semantic Segmentation
    Chong, Yanwen
    Nie, Congchong
    Tao, Yulong
    Chen, Xiaoshu
    Pan, Shaoming
    IEEE ACCESS, 2020, 8 : 179213 - 179223
  • [25] Adaptive road detection via context-aware label transfer
    Wang, Qi
    Fang, Jianwu
    Yuan, Yuan
    NEUROCOMPUTING, 2015, 158 : 174 - 183
  • [26] An uncertainty-aware domain adaptive semantic segmentation framework
    Yin H.
    Wang P.
    Liu B.
    Yan J.
    Autonomous Intelligent Systems, 2024, 4 (01):
  • [27] CAFS-Net: Context-Aware Feature Selection Network for Accurate and Efficient Tiny Surface Defect Segmentation
    Tian, Zhonghua
    Yang, Xianqiang
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2025, 74
  • [28] CAAN: Context-Aware attention network for visual question answering
    Chen, Chongqing
    Han, Dezhi
    Chang, Chin -Chen
    PATTERN RECOGNITION, 2022, 132
  • [29] PFENet plus plus : Boosting Few-Shot Semantic Segmentation With the Noise-Filtered Context-Aware Prior Mask
    Luo, Xiaoliu
    Tian, Zhuotao
    Zhang, Taiping
    Yu, Bei
    Tang, Yuan Yan
    Jia, Jiaya
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (02) : 1273 - 1289
  • [30] SRANet: semantic relation aware network for semantic segmentation of remote sensing images
    Gao, Liang
    Qian, Yurong
    Liu, Hui
    Zhong, Xiwu
    Xiao, Zhengqing
    JOURNAL OF APPLIED REMOTE SENSING, 2022, 16 (01)