Context-aware adaptive network for UDA semantic segmentation

被引:0
|
作者
Yuan, Yu [1 ]
Shi, Jinlong [1 ]
Shu, Xin [2 ]
Qian, Qiang [1 ]
Song, Yunna [1 ]
Ou, Zhen [1 ]
Xu, Dan [1 ]
Zuo, Xin [1 ]
Yu, Yuecheng [1 ]
Sun, Yunhan [2 ]
机构
[1] Jiangsu Univ Sci & Technol, Sch Comp, Zhenjiang 212003, Peoples R China
[2] State Key Lab Novel Software Technol, Nanjing 210008, Peoples R China
关键词
Semantic segmentation; Unsupervised domain adaptation(UDA); Image mix; Contextual Information;
D O I
10.1007/s00530-024-01397-7
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Unsupervised Domain Adaptation (UDA) plays a pivotal role in enhancing the segmentation performance of models in the target domain by mitigating the domain shift between the source and target domains. However, Existing UDA image mix methods often overlook the contextual association between classes, limiting the segmentation capability of the model. To address this issue, we propose the context-aware adaptive network that enhances the model's perception of contextual association information and maintains the contextual associations between different classes in mixed images, thereby improving the adaptability of the model. Firstly, we design a image mix strategy based on dynamic class correlation called DCCMix that constructs class correlation meta groups to preserve the contextual associations between different classes. Simultaneously, DCCMix dynamically adjusts the class proportion of the source domain within the mixed domain to gradually align with the distribution of the target domain, thereby improving training effectiveness. Secondly, the feature-wise fusion module and contextual feature-aware module are designed to better perceive contextual information of images and alleviate the issue of information loss during the feature extraction. Finally, we propose an adaptive class-edge weight to strengthen the segmentation ability of edge pixels in the model. Experimental results demonstrate that our proposed method achieves the mloU of 63.2% and 69.8% on two UDA benchmark tasks: SYNTHIA ->\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rightarrow$$\end{document} Cityscapes and GTA ->\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rightarrow$$\end{document} Cityscapes respectively. The code is available at https://github.com/yuheyuan/CAAN.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] CNet: Context-Aware Network for Semantic Segmentation
    Cheng, Rongliang
    Zhang, Junge
    Yang, Peipei
    Liu, Kangwei
    Zhang, Shujun
    PROCEEDINGS 2017 4TH IAPR ASIAN CONFERENCE ON PATTERN RECOGNITION (ACPR), 2017, : 67 - 72
  • [2] Context-Aware Mixup for Domain Adaptive Semantic Segmentation
    Zhou, Qianyu
    Feng, Zhengyang
    Gu, Qiqi
    Pang, Jiangmiao
    Cheng, Guangliang
    Lu, Xuequan
    Shi, Jianping
    Ma, Lizhuang
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2023, 33 (02) : 804 - 817
  • [3] Context-aware semantic segmentation network for tunnel face feature identification
    Zhao, Liang
    Hao, Shuya
    Song, Zhanping
    AUTOMATION IN CONSTRUCTION, 2024, 165
  • [4] HRDA: Context-Aware High-Resolution Domain-Adaptive Semantic Segmentation
    Hoyer, Lukas
    Dai, Dengxin
    Van Gool, Luc
    COMPUTER VISION - ECCV 2022, PT XXX, 2022, 13690 : 372 - 391
  • [5] Enhancing Unsupervised Semantic Segmentation Through Context-Aware Clustering
    Zhuo, Wei
    Wang, Yuan
    Chen, Junliang
    Deng, Songhe
    Wang, Zhi
    Shen, Linlin
    Zhu, Wenwu
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 10081 - 10093
  • [6] Context-aware saliency map generation using semantic segmentation
    Ahmadi, Mahdi
    Hajabdollahi, Mohsen
    Karimi, Nader
    Samavi, Shadrokh
    26TH IRANIAN CONFERENCE ON ELECTRICAL ENGINEERING (ICEE 2018), 2018, : 616 - 620
  • [7] Context-aware Feature Generation for Zero-shot Semantic Segmentation
    Gu, Zhangxuan
    Zhou, Siyuan
    Niu, Li
    Zhao, Zihan
    Zhang, Liqing
    MM '20: PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, 2020, : 1921 - 1929
  • [8] Semantic context-aware attention UNET for lung cancer segmentation and classification
    Balachandran, Sangeetha
    Ranganathan, Vidhyapriya
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2023, 33 (03) : 822 - 836
  • [9] Is Context-Aware CNN Ready for the Surroundings? Panoramic Semantic Segmentation in the Wild
    Yang, Kailun
    Hu, Xinxin
    Stiefelhagen, Rainer
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 (30) : 1866 - 1881
  • [10] FECANet: Boosting Few-Shot Semantic Segmentation With Feature-Enhanced Context-Aware Network
    Liu, Huafeng
    Peng, Pai
    Chen, Tao
    Wang, Qiong
    Yao, Yazhou
    Hua, Xian-Sheng
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 8580 - 8592