Two-Dimensional Block Trees

被引:4
作者
Brisaboa, Nieves R. [1 ]
Gagie, Travis [2 ]
Gomez-Brandon, Adrian [3 ]
Navarro, Gonzalo [4 ]
机构
[1] Univ A Coruna, Fac Informat, CITIC, La Coruna 15071, Spain
[2] Dalhousie Univ, Fac Comp Sci, CeBiB, Halifax, NS, Canada
[3] Univ A Coruna, Fac Informat, CITIC, CeBiB, La Coruna 15071, Spain
[4] Univ Chile, Dept Comp Sci, CeBiB, Beauchef 851, Santiago, Chile
基金
加拿大自然科学与工程研究理事会;
关键词
Block Trees; k (2)-trees; graph compression; image compression; COMPRESSION; REPRESENTATIONS; WEB;
D O I
10.1093/comjnl/bxac182
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The Block Tree is a data structure for representing repetitive sequences in compressed space, which reaches space comparable with that of Lempel-Ziv compression while retaining fast direct access to any position in the sequence. In this paper, we generalize Block Trees to two dimensions, in order to exploit repetitive patterns in the representation of images, matrices and other kinds of bidimensional data. We demonstrate the practicality of the two-dimensional Block Trees (2D-BTs) in representing the adjacency matrices of Web graphs, and raster images in GIS applications. For this purpose, we integrate our 2D-BT with the k(2)-tree-an efficient structure that exploits clustering and sparseness to compress adjacency matrices-so that it also exploits repetitive patterns. Our experiments show that this structure uses 60-80% of the space of the original k(2)-tree, while being 30% faster to three times slower when accessing cells.
引用
收藏
页码:391 / 406
页数:16
相关论文
共 50 条
[32]   Spaces of states of the two-dimensional O(n) and Potts models [J].
Jacobsen, Jesper Lykke ;
Ribault, Sylvain ;
Saleur, Hubert .
SCIPOST PHYSICS, 2023, 14 (05)
[33]   Two-Dimensional Perisaccadic Visual Mislocalization in Rhesus Macaque Monkeys [J].
Baumann, Matthias P. ;
Hafed, Ziad M. .
ENEURO, 2025, 12 (06)
[34]   The anisotropic Dunkl oscillator problem on the two-dimensional curved spaces [J].
Najafizade, Amene ;
Panahi, Hossein .
MODERN PHYSICS LETTERS A, 2022, 37 (04)
[35]   Two-dimensional topological theories, rational functions and their tensor envelopes [J].
Khovanov, Mikhail ;
Ostrik, Victor ;
Kononov, Yakov .
SELECTA MATHEMATICA-NEW SERIES, 2022, 28 (04)
[36]   Decomposition of the Fock space in two-dimensional square lattice systems [J].
Kim, B. ;
Chung, M. H. ;
Kwon, J. H. .
LETTERS IN MATHEMATICAL PHYSICS, 2006, 78 (01) :73-88
[37]   Non-Stationary Two-Dimensional Subband Transformer Filters [J].
Ceperkovic, Vladimir ;
Prokin, Milan .
2012 20TH TELECOMMUNICATIONS FORUM (TELFOR), 2012, :772-775
[38]   Two-dimensional dynamic damage accumulation in engineered brittle materials [J].
Koch, Brendan M. L. ;
Lo, Calvin ;
Li, Haoyang ;
Sano, Tomoko ;
Ligda, Jonathan ;
Hogan, James David .
ENGINEERING FRACTURE MECHANICS, 2021, 244
[39]   Decomposition of the Fock Space in Two-Dimensional Square Lattice Systems [J].
B. Kim ;
M. H. Chung ;
J. H. Kwon .
Letters in Mathematical Physics, 2006, 78 :73-88
[40]   Two-dimensional orthogonal DCT expansion in triangular and trapezoid regions [J].
Pei, Soo-Chang ;
Ding, Jian-Jiun ;
Lee, Tzu-Heng Henry .
VISUAL COMMUNICATIONS AND IMAGE PROCESSING 2010, 2010, 7744