Development of a 3D Vascular Network Visualization Platform for One-Dimensional Hemodynamic Simulation

被引:0
作者
Chen, Yan [1 ]
Kobayashi, Masaharu [2 ]
Yuhn, Changyoung [3 ]
Oshima, Marie [2 ,4 ]
机构
[1] Univ Tokyo, Grad Sch Interdisciplinary Informat Studies, 7-3-1 Hongo,Bunkyo Ku, Tokyo 1130033, Japan
[2] Univ Tokyo, Inst Ind Sci, 4-6-1 Komaba,Meguro Ku, Tokyo 1538505, Japan
[3] Univ Tokyo, Dept Mech Engn, 7-3-1 Hongo,Bunkyo Ku, Tokyo 1130033, Japan
[4] Univ Tokyo, Interfac Initiat Informat Studies, 7-3-1 Hongo,Bunkyo Ku, Tokyo 1130033, Japan
来源
BIOENGINEERING-BASEL | 2024年 / 11卷 / 04期
关键词
blood flow simulation; data visualization; one-dimensional model; patient-specific; medical image;
D O I
10.3390/bioengineering11040313
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Recent advancements in computational performance and medical simulation technology have made significant strides, particularly in predictive diagnosis. This study focuses on the blood flow simulation reduced-order models, which provide swift and cost-effective solutions for complex vascular systems, positioning them as practical alternatives to 3D simulations in resource-limited medical settings. The paper introduces a visualization platform for patient-specific and image-based 1D-0D simulations. This platform covers the entire workflow, from modeling to dynamic 3D visualization of simulation results. Two case studies on, respectively, carotid stenosis and arterial remodeling demonstrate its utility in blood flow simulation applications.
引用
收藏
页数:14
相关论文
共 34 条
[1]   Modelling the circle of Willis to assess the effects of anatomical variations and occlusions on cerebral flows [J].
Alastruey, J. ;
Parker, K. H. ;
Peiro, J. ;
Byrd, S. M. ;
Sherwin, S. J. .
JOURNAL OF BIOMECHANICS, 2007, 40 (08) :1794-1805
[2]   MULTI-BRANCHED MODEL OF THE HUMAN ARTERIAL SYSTEM [J].
AVOLIO, AP .
MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 1980, 18 (06) :709-718
[3]  
Azer Karim, 2007, Cardiovasc Eng, V7, P51, DOI 10.1007/s10558-007-9031-y
[4]   An Anatomically Detailed Arterial Network Model for One-Dimensional Computational Hemodynamics [J].
Blanco, Pablo J. ;
Watanabe, Sansuke M. ;
Passos, Marco Aurelio R. F. ;
Lemos, Pedro A. ;
Feijoo, Raul A. .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2015, 62 (02) :736-753
[5]  
Chen Y., 2019, P CMBE 2019 6 INT C, VVolume 1, P473
[6]  
FITCHETT D H, 1991, American Journal of Physiology, V261, pH1026
[7]  
Formaggia Luca, 2006, Computer Methods in Biomechanics and Biomedical Engineering, V9, P273, DOI 10.1080/10255840600857767
[8]   Modeling Blood Flow Circulation in Intracranial Arterial Networks: A Comparative 3D/1D Simulation Study [J].
Grinberg, L. ;
Cheever, E. ;
Anor, T. ;
Madsen, J. R. ;
Karniadakis, G. E. .
ANNALS OF BIOMEDICAL ENGINEERING, 2011, 39 (01) :297-309
[9]  
HUGHES T J R, 1973, Mathematical Biosciences, V18, P161, DOI 10.1016/0025-5564(73)90027-8
[10]   Vascular adaptation and mechanical homeostasis at tissue, cellular, and sub-cellular levels [J].
Humphrey, J. D. .
CELL BIOCHEMISTRY AND BIOPHYSICS, 2008, 50 (02) :53-78