Machine Learning Approaches for Analysis of Total Ionizing Dose in Microelectronics

被引:0
作者
Dean, B. [1 ,2 ]
Peyton, T. [3 ]
Carpenter, J. L. [3 ]
Sam, D. [3 ]
Peterson, A. [3 ]
Kim, J. [3 ]
Lawrence, S. P. [3 ]
Fadul, M. [3 ]
Reising, D. R. [3 ]
Loveless, T. D. [3 ]
机构
[1] Univ Tennessee, Chattanooga, TN 37403 USA
[2] Vanderbilt Univ, Nashville, TN 37235 USA
[3] Univ Tennessee, 615 McCallie Ave, Chattanooga, TN 37403 USA
来源
2022 22ND EUROPEAN CONFERENCE ON RADIATION AND ITS EFFECTS ON COMPONENTS AND SYSTEMS, RADECS | 2022年
关键词
Convolutional Neural Network; Machine Learning; Radiation Effects; Total Ionizing Dose; Regression; Classification; Complex Digital Device; RADIATION EFFECTS SPECTROSCOPY;
D O I
10.1109/RADECS55911.2022.10412523
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Supervised deep learning is a subset of machine learning (ML) that allows for the development of phenomenological models based on measured observations through layered artificial neurons. A convolutional neural network (CNN) is one model typically used in image recognition that allows for classifying behavior in discrete sets or enabling regression analysis. This work demonstrates a one-dimensional CNN to analyze irradiated commercial off-the-shelf (COTS) electronics. COTS microcontroller units (MCU) were irradiated with 10 keV X-rays, and CNN models were trained on the resulting internally generated noise signatures from the clock module. As a result, the MCUs are accurately classified as either fresh or dosed, and the total ionizing dose (TID) is predictable through a regression model. This approach allows for part dosimetry and in situ device health monitoring without additional components.
引用
收藏
页码:211 / 217
页数:7
相关论文
共 13 条
[1]   Total radiation dose at geostationary orbit [J].
Bhat, BR ;
Upadhyaya, N ;
Kulkarni, R .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2005, 52 (02) :530-534
[2]   Radiation Specification and Testing of Heterogenous Microprocessor SOCs [J].
Guertin, Steven M. ;
Some, Raphael ;
Nsengiyumva, Patrick ;
Cannon, Ethan H. ;
Cabanas-Holmen, Manuel ;
Ballast, Jon .
2019 19TH EUROPEAN CONFERENCE ON RADIATION AND ITS EFFECTS ON COMPONENTS AND SYSTEMS (RADECS), 2022, :219-225
[3]  
Kumar S, 2016, ANNU IEEE IND CONF
[4]   Analysis of Single-Event Transients (SETs) Using Machine Learning (ML) and Ionizing Radiation Effects Spectroscopy (IRES) [J].
Loveless, T. D. ;
Reising, D. R. ;
Cancelleri, J. C. ;
Massengill, L. W. ;
McMorrow, D. .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2021, 68 (08) :1600-1606
[5]   Ionizing Radiation Effects Spectroscopy for Analysis of Single-Event Transients [J].
Loveless, T. D. ;
Patel, B. ;
Reising, D. R. ;
Roca, R. ;
Allen, M. ;
Massengill, L. W. ;
McMorrow, D. .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2020, 67 (01) :99-107
[6]  
Netzer R, 2014, 2014 IEEE RADIATION EFFECTS DATA WORKSHOP (REDW)
[7]   Ionizing Radiation Effects Spectroscopy for Analysis of Total-Ionizing Dose Degradation in RF Circuits [J].
Patel, B. ;
Joplin, M. ;
Boggs, R. C. ;
Reising, D. R. ;
McCurdy, M. W. ;
Massengill, L. W. ;
Loveless, T. D. .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2019, 66 (01) :61-68
[8]   Using Benchmarks for Radiation Testing of Microprocessors and FPGAs [J].
Quinn, Heather ;
Robinson, William H. ;
Rech, Paolo ;
Aguirre, Miguel ;
Barnard, Arno ;
Desogus, Marco ;
Entrena, Luis ;
Garcia-Valderas, Mario ;
Guertin, Steven M. ;
Kaeli, David ;
Kastensmidt, Fernanda Lima ;
Kiddie, Bradley T. ;
Sanchez-Clemente, Antonio ;
Reorda, Matteo Sonza ;
Sterpone, Luca ;
Wirthlin, Michael .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2015, 62 (06) :2547-2554
[9]   Investigation of TID and Dynamic Burn-In-Induced VT Shift on RTG4 Flash-Based FPGA [J].
Rezzak, Nadia ;
Wang, Jih-Jong ;
Traas, Michael ;
Zerrouki, Amal ;
Bakker, Gregory ;
Xue, Fengliang ;
Cai, Alex ;
Hawley, Frank ;
McCollum, John ;
Hamdy, Esmat .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2018, 65 (01) :64-70
[10]  
Rice W., 2021, 2021 IEEE RAD EFFECT, P1