A REMARK ON INVERSE PROBLEMS FOR NONLINEAR MAGNETIC SCHRÖDINGER EQUATIONS ON COMPLEX MANIFOLDS

被引:3
作者
Krupchyk, Katya [1 ]
Uhlmann, Gunther [2 ,3 ]
Yan, Lili [1 ,4 ]
机构
[1] Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA
[2] Univ Washington, Dept Math, Seattle, WA 98195 USA
[3] Hong Kong Univ Sci & Technol, Inst Adv Study, Hong Kong, Peoples R China
[4] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
基金
美国国家科学基金会;
关键词
CALDERON PROBLEM; ELLIPTIC-EQUATIONS; UNIQUENESS;
D O I
10.1090/proc/16060
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that the knowledge of the Dirichlet-to-Neumann map for a nonlinear magnetic Schr & ouml;dinger operator on the boundary of a compact complex manifold, equipped with a K & auml;hler metric and admitting sufficiently many global holomorphic functions, determines the nonlinear magnetic and electric potentials uniquely.
引用
收藏
页码:2413 / 2422
页数:10
相关论文
共 47 条
[41]   The Calderon problem for quasilinear elliptic equations [J].
Munoz, Claudio ;
Uhlmann, Gunther .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2020, 37 (05) :1143-1166
[42]   GLOBAL IDENTIFIABILITY FOR AN INVERSE PROBLEM FOR THE SCHRODINGER-EQUATION IN A MAGNETIC-FIELD [J].
NAKAMURA, G ;
SUN, ZQ ;
UHLMANN, G .
MATHEMATISCHE ANNALEN, 1995, 303 (03) :377-388
[43]  
Schwarz G., 1995, Lecture Notes in Mathematics, V1607, pviii+155, DOI DOI 10.1007/BFB0095978
[44]   Recovering a quasilinear conductivity from boundary measurements [J].
Shankar, Ravi .
INVERSE PROBLEMS, 2021, 37 (01)
[45]   On a quasilinear inverse boundary value problem [J].
Sun, ZQ .
MATHEMATISCHE ZEITSCHRIFT, 1996, 221 (02) :293-305
[46]  
Sun ZQ, 1997, AM J MATH, V119, P771
[47]   A GLOBAL UNIQUENESS THEOREM FOR AN INVERSE BOUNDARY-VALUE PROBLEM [J].
SYLVESTER, J ;
UHLMANN, G .
ANNALS OF MATHEMATICS, 1987, 125 (01) :153-169