A REMARK ON INVERSE PROBLEMS FOR NONLINEAR MAGNETIC SCHRÖDINGER EQUATIONS ON COMPLEX MANIFOLDS

被引:3
作者
Krupchyk, Katya [1 ]
Uhlmann, Gunther [2 ,3 ]
Yan, Lili [1 ,4 ]
机构
[1] Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA
[2] Univ Washington, Dept Math, Seattle, WA 98195 USA
[3] Hong Kong Univ Sci & Technol, Inst Adv Study, Hong Kong, Peoples R China
[4] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
基金
美国国家科学基金会;
关键词
CALDERON PROBLEM; ELLIPTIC-EQUATIONS; UNIQUENESS;
D O I
10.1090/proc/16060
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that the knowledge of the Dirichlet-to-Neumann map for a nonlinear magnetic Schr & ouml;dinger operator on the boundary of a compact complex manifold, equipped with a K & auml;hler metric and admitting sufficiently many global holomorphic functions, determines the nonlinear magnetic and electric potentials uniquely.
引用
收藏
页码:2413 / 2422
页数:10
相关论文
共 47 条
[1]   ON THE SET OF METRICS WITHOUT LOCAL LIMITING CARLEMAN WEIGHTS [J].
Angulo-Ardoy, Pablo .
INVERSE PROBLEMS AND IMAGING, 2017, 11 (01) :47-64
[2]   OBSTRUCTIONS TO THE EXISTENCE OF LIMITING CARLEMAN WEIGHTS [J].
Angulo-Ardoy, Pablo ;
Faraco, Daniel ;
Guijarro, Luis ;
Ruiz, Alberto .
ANALYSIS & PDE, 2016, 9 (03) :575-595
[3]  
[Anonymous], 2006, Appl Anal, DOI DOI 10.1080/00036810600603377
[4]   Direct and inverse problems for the nonlinear time-harmonic Maxwell equations in Kerr-type media [J].
Assylbekov, Yernat M. ;
Zhou, Ting .
JOURNAL OF SPECTRAL THEORY, 2021, 11 (01) :1-38
[5]  
Brown R. M., 2001, Journal of Inverse and ILL-Posed Problems, V9, P567
[6]   Recovering a potential from Cauchy data in the two-dimensional case [J].
Bukhgeim, A. L. .
JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2008, 16 (01) :19-33
[7]  
Carstea C., 2020, ARXIV
[8]   The Calderon inverse problem for isotropic quasilinear conductivities [J].
Carstea, Catalin, I ;
Feizmohammadi, Ali ;
Kian, Yavar ;
Krupchyk, Katya ;
Uhlmann, Gunther .
ADVANCES IN MATHEMATICS, 2021, 391
[9]   An inverse boundary value problem for certain anisotropic quasilinear elliptic equations [J].
Carstea, Catalin, I ;
Feizmohammadi, Ali .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 284 :318-349
[10]   Reconstruction for the coefficients of a quasilinear elliptic partial differential equation [J].
Carstea, Catalin, I ;
Nakamura, Gen ;
Vashisth, Manmohan .
APPLIED MATHEMATICS LETTERS, 2019, 98 :121-127