Sums of infinite series involving the Riemann zeta function

被引:0
作者
Mortini, Raymond [1 ,2 ,3 ]
Rupp, Rudolf [4 ]
机构
[1] Univ Lorraine, Dept Math, CNRS, F-57000 Metz, France
[2] Univ Lorraine, Inst Elie Cartan de Lorraine, CNRS, F-57000 Metz, France
[3] Univ Luxembourg, Dept Math, L-4364 Esch Sur Alzette, Luxembourg
[4] TH Nurnberg, Fak Angew Math Phys & Allgemeinwissensch, Kesslerpl 12, D-90489 Nurnberg, Germany
关键词
Riemann zeta function; Harmonic numbers; Alternating harmonic numbers; Cotangens;
D O I
10.1007/s00013-024-02008-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We determine the values of several infinite series involving the Riemann zeta function. In particular, degree one rationally weighted summands involving the Riemann function evaluated at even numbers give a finite sum involving only the Riemann function evaluated at odd numbers.
引用
收藏
页码:163 / 172
页数:10
相关论文
共 9 条
[1]   Sums associated with the zeta function [J].
Choi, J ;
Srivastava, HM .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1997, 206 (01) :103-120
[2]  
Fischer W., 1988, Funktionentheorie
[3]  
Johnson W.W., 1906, Bull. Amer. Math. Soc., V2, P477
[4]  
Mortini R., 2021, Extension Problems and StableRanks: A Space Odyssey
[5]  
Omarjee M., 2023, Math. Mag, V96, P190
[6]  
Srivastava H.M., 1988, RIV MAT UNIV PARMA, V14, P1
[7]   SUMS OF CERTAIN SERIES OF THE RIEMANN-ZETA FUNCTION [J].
SRIVASTAVA, HM .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1988, 134 (01) :129-140
[8]  
stackexchange, How to evaluate directly
[9]  
Verma DP., 1983, Indian J. Math, V25, P181