Multicolor-Assay-on-a-Chip Processed by Robotic Operation (MACpro) with Improved Diagnostic Accuracy for Field-Deployable Detection

被引:3
作者
Liu, Binyao [1 ,2 ]
Cheng, Yixin [1 ,2 ]
Pan, Xiang [2 ,3 ]
Yang, Wen [1 ,2 ]
Li, Xiangpeng [4 ]
Wang, Lele [5 ]
Ye, Haihang [1 ,2 ,6 ]
Pan, Tingrui [1 ,2 ,7 ]
机构
[1] Univ Sci & Technol China, Sch Biomed Engn, Div Life Sci & Med, Hefei 230026, Anhui, Peoples R China
[2] Univ Sci & Technol China, Suzhou Inst Adv Res, Inst Innovat Med Devices, Ctr Intelligent Med Equipment & Devices, Suzhou 215123, Jiangsu, Peoples R China
[3] Univ Sci & Technol China, Nano Sci & Technol Inst, Suzhou Inst Adv Res, Suzhou 215123, Jiangsu, Peoples R China
[4] Soochow Univ, Coll Mech & Elect Engn, Suzhou 215123, Jiangsu, Peoples R China
[5] Shenzhen Shaanxi Coal Hitech Res Inst Co Ltd, Shenzhen 518107, Peoples R China
[6] Univ Sci & Technol China, Key Lab Precis & Intelligent Chem, Hefei 230026, Anhui, Peoples R China
[7] Univ Sci & Technol China, Dept Precis Machinery & Precis Instrumentat, Hefei 230026, Anhui, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
NANOPARTICLES; CALIBRATION; MICROFLUIDICS; BIOSENSOR;
D O I
10.1021/acs.analchem.3c05918
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The ability to deploy decentralized laboratories with autonomous and reliable disease diagnosis holds the potential to deliver accessible healthcare services for public safety. While microfluidic technologies provide precise manipulation of small fluid volumes with improved assay performance, their limited automation and versatility confine them to laboratories. Herein, we report the utility of multicolor assay-on-a-chip processed by robotic operation (MACpro), to address this unmet need. The MACpro platform comprises a robot-microfluidic interface and an eye-in-hand module that provides flexible yet stable actions to execute tasks in a programmable manner, such as the precise manipulation of the microfluidic chip along with different paths. Notably, MACpro shows improved detection performance by integrating the microbead-based antibody immobilization with enhanced target recognition and multicolor sensing via Cu2+-catalyzed plasmonic etching of gold nanorods for rapid and sensitive analyte quantification. Using interferon-gamma as an example, we demonstrate that MACpro completes a sample-to-answer immunoassay within 30 min and achieves a 10-fold broader dynamic range and a 10-fold lower detection limit compared to standard enzyme-linked immunosorbent assays (0.66 vs 5.2 pg/mL). MACpro extends the applications beyond traditional laboratories and presents an automated solution to expand diagnostic capacity in diverse settings.
引用
收藏
页码:6634 / 6642
页数:9
相关论文
共 58 条
[1]   3D Printing of Monolithic Capillarity-Driven Microfluidic Devices for Diagnostics [J].
Achille, Clement ;
Parra-Cabrera, Cesar ;
Dochy, Ruben ;
Ordutowski, Henry ;
Piovesan, Agnese ;
Piron, Pieter ;
Van Looy, Lore ;
Kushwaha, Shashwat ;
Reynaerts, Dominiek ;
Verboven, Pieter ;
Nicolai, Bart ;
Lammertyn, Jeroen ;
Spasic, Dragana ;
Ameloot, Rob .
ADVANCED MATERIALS, 2021, 33 (25)
[2]   Diagnostic Approaches For COVID-19: Lessons Learned and the Path Forward [J].
Alafeef, Maha ;
Pan, Dipanjan .
ACS NANO, 2022, 16 (08) :11545-11576
[3]   Fast, accurate, point-of-care COVID-19 pandemic diagnosis enabled through advanced lab-on-chip optical biosensors: Opportunities and challenges [J].
Asghari, Aref ;
Wang, Chao ;
Yoo, Kyoung Min ;
Rostamian, Ali ;
Xu, Xiaochuan ;
Shin, Jong-Dug ;
Dalir, Hamed ;
Chen, Ray T. .
APPLIED PHYSICS REVIEWS, 2021, 8 (03)
[4]   Opportunities and Challenges for Biosensors and Nanoscale Analytical Tools for Pandemics: COVID-19 [J].
Bhalla, Nikhil ;
Pan, Yuwei ;
Yang, Zhugen ;
Payam, Amir Farokh .
ACS NANO, 2020, 14 (07) :7783-7807
[5]   Challenges and Controversies to Testing for COVID-19 [J].
Binnicker, Matthew J. .
JOURNAL OF CLINICAL MICROBIOLOGY, 2020, 58 (11)
[6]   Dual Functional Ultrasensitive Point-of-Care Clinical Diagnosis Using Metal-Organic Frameworks-Based Immunobeads [J].
Chai, Fengli ;
Wang, Dou ;
Shi, Fei ;
Zheng, Wenfu ;
Zhao, Xiaohui ;
Chen, Yao ;
Mao, Cuiping ;
Zhang, Jiangjiang ;
Jiang, Xingyu .
NANO LETTERS, 2023, 23 (19) :9056-9064
[7]   Rapid implementation of mobile technology for real-time epidemiology of COVID-19 [J].
Drew, David A. ;
Nguyen, Long H. ;
Steves, Claire J. ;
Menni, Cristina ;
Freydin, Maxim ;
Varsavsky, Thomas ;
Sudre, Carole H. ;
Cardoso, M. Jorge ;
Ourselin, Sebastien ;
Wolf, Jonathan ;
Spector, Tim D. ;
Chan, Andrew T. .
SCIENCE, 2020, 368 (6497) :1362-+
[8]   Online robot calibration based on vision measurement [J].
Du, Guanglong ;
Zhang, Ping .
ROBOTICS AND COMPUTER-INTEGRATED MANUFACTURING, 2013, 29 (06) :484-492
[9]   A robot-assisted acoustofluidic end effector [J].
Durrer, Jan ;
Agrawal, Prajwal ;
Ozgul, Ali ;
Neuhauss, Stephan C. F. ;
Nama, Nitesh ;
Ahmed, Daniel .
NATURE COMMUNICATIONS, 2022, 13 (01)
[10]   Robot calibration using a portable photogrammetry system [J].
Filion, Alexandre ;
Joubair, Ahmed ;
Tahan, Antoine S. ;
Bonev, Ilian A. .
ROBOTICS AND COMPUTER-INTEGRATED MANUFACTURING, 2018, 49 :77-87