A novel global grid model for soil moisture retrieval considering geographical disparity in spaceborne GNSS-R

被引:4
作者
Huang, Liangke [1 ]
Pan, Anrong [1 ]
Chen, Fade [1 ]
Guo, Fei [2 ]
Li, Haojun [3 ]
Liu, Lilong [1 ]
机构
[1] Guilin Univ Technol, Coll Geomat & Geoinformat, Guilin 541004, Peoples R China
[2] Wuhan Univ, Sch Geodesy & Geomat, Wuhan 430079, Peoples R China
[3] Tongji Univ, Coll Surveying & Geo Informat, Shanghai 200092, Peoples R China
来源
SATELLITE NAVIGATION | 2024年 / 5卷 / 01期
关键词
Soil moisture (SM); Global navigation satellite system-reflectometry (GNSS-R); Cyclone GNSS (CYGNSS); Geographical disparity; L-BAND; MULTIPATH; REFLECTOMETRY; REFLECTIVITY; TEMPERATURE; PERFORMANCE; SIGNALS; OCEAN;
D O I
10.1186/s43020-024-00150-9
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Spaceborne global navigation satellite system-reflectometry has become an effective technique for Soil Moisture (SM) retrieval. However, the accuracy of global SM retrieval using a single model is limited due to the complexity of land surface. Introducing redundant ancillary data may also result in over-reliance problems. Therefore, we propose a method for SM retrieval that considers geographical disparities using the data from Cyclone GNSS (CYGNSS) observations and Soil Moisture Active and Passive (SMAP) product. Based on the CYGNSS effective reflectivity and ancillary datasets of SMAP, we establish five models for each grid with different parameters to achieve global SM retrieval. Subsequently, an optimal model, determined by the performance indicator, is used for SM retrieval. The results show that the root mean square error SRMSE\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{\mathrm{RMSE}}$$\end{document} with the improved method is decreased by 9.1% using SMAP SM as reference with the SRMSE\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{\mathrm{RMSE}}$$\end{document} = 0.040 cm3/cm3 compared with using single reflectivity-temperature-vegetation method. Additionally, using the in-situ SM of International Soil Moisture Network as reference, the overall correlation coefficient R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R$$\end{document} and SRMSE\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{\mathrm{RMSE}}$$\end{document} values with the improved method are 0.80 and 0.064 cm3/cm3, respectively. The average R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R$$\end{document} of the chosen sites is increased by 22.7%, and the average SRMSE\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{\mathrm{RMSE}}$$\end{document} is decreased by 8.7%. The results indicate that the improved method can better retrieve SM in both global and local scales without redundant auxiliary data.
引用
收藏
页数:17
相关论文
共 61 条
  • [1] Soil Moisture Retrievals Using CYGNSS Data in a Time-Series Ratio Method: Progress Update and Error Analysis
    Al-Khaldi, Mohammad M.
    Johnson, Joel T.
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [2] Inland Water Body Mapping Using CYGNSS Coherence Detection
    Al-Khaldi, Mohammad M.
    Johnson, Joel T.
    Gleason, Scott
    Chew, Clara C.
    Gerlein-Safdi, Cynthia
    Shah, Rashmi
    Zuffada, Cinzia
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (09): : 7385 - 7394
  • [3] On the Correlation Between GNSS-R Reflectivity and L-Band Microwave Radiometry
    Alonso-Arroyo, Alberto
    Camps, Adriano
    Monerris, Alessandra
    Ruediger, Christoph
    Walker, Jeffrey P.
    Onrubia, Raul
    Querol, Jorge
    Park, Hyuk
    Pascual, Daniel
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2016, 9 (12) : 5862 - 5879
  • [4] Characterization of rain impact on L-Band GNSS-R ocean surface measurements
    Balasubramaniam, Rajeswari
    Ruf, Christopher
    [J]. REMOTE SENSING OF ENVIRONMENT, 2020, 239
  • [5] Performance Assessment of Positioning Based on Multi-Frequency Multi-GNSS Observations: Signal Quality, PPP and Baseline Solution
    Bu, Jinwei
    Yu, Kegen
    Qian, Nijia
    Zuo, Xiaoqing
    Chang, Jun
    [J]. IEEE ACCESS, 2021, 9 : 5845 - 5861
  • [6] L-Band Vegetation Optical Depth Estimation Using Transmitted GNSS Signals: Application to GNSS-Reflectometry and Positioning
    Camps, Adriano
    Alonso-Arroyo, Alberto
    Park, Hyuk
    Onrubia, Raul
    Pascual, Daniel
    Querol, Jorge
    [J]. REMOTE SENSING, 2020, 12 (15)
  • [7] Sensitivity of TDS-1 GNSS-R Reflectivity to Soil Moisture: Global and Regional Differences and Impact of Different Spatial Scales
    Camps, Adriano
    Vall Llossera, Mercedes
    Park, Hyuk
    Portal, Gerard
    Rossato, Luciana
    [J]. REMOTE SENSING, 2018, 10 (11):
  • [8] Camps A, 2018, INT GEOSCI REMOTE SE, P3161, DOI 10.1109/IGARSS.2018.8518942
  • [9] Above-Ground Biomass Retrieval over Tropical Forests: A Novel GNSS-R Approach with CyGNSS
    Carreno-Luengo, Hugo
    Luzi, Guido
    Crosetto, Michele
    [J]. REMOTE SENSING, 2020, 12 (09)
  • [10] An Improved Method for Pan-Tropical Above-Ground Biomass and Canopy Height Retrieval Using CYGNSS
    Chen, Fade
    Guo, Fei
    Liu, Lilong
    Nan, Yang
    [J]. REMOTE SENSING, 2021, 13 (13)