Bayesian Robust Tensor Ring Decomposition for Incomplete Multiway Data

被引:0
作者
Huang, Zhenhao [1 ,2 ]
Qiu, Yuning [1 ,3 ]
Chen, Xinqi [1 ,4 ]
Sun, Weijun [5 ,6 ]
Zhou, Guoxu [1 ,2 ]
机构
[1] Guangdong Univ Technol, Sch Automat, Guangzhou 510006, Peoples R China
[2] Guangdong Univ Technol, Key Lab Intelligent Detect & Internet Things Mfg, Minist Educ, Guangzhou 510006, Peoples R China
[3] RIKEN Ctr Adv Intelligence Project, Tokyo 1030027, Japan
[4] Guangdong Univ Technol, Key Lab Intelligent Informat Proc & Syst Integrat, Minist Educ, Guangzhou 510006, Peoples R China
[5] Guangdong Univ Technol, Ctr Intelligent Batch Mfg Based IoT Technol 111, Guangzhou 510006, Peoples R China
[6] Guangdong Univ Technol, Guangdong Key Lab IoT Informat Technol, Guangzhou 510006, Peoples R China
来源
IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS | 2024年 / 54卷 / 07期
基金
中国国家自然科学基金;
关键词
Automatic tensor ring (TR) rank determination; probability distribution; robust tensor completion (RTC); TR; variational Bayesian (VB) algorithm; TRAIN RANK; COMPLETION; IMAGE; ALGORITHMS;
D O I
10.1109/TSMC.2024.3375456
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Robust tensor completion (RTC) aims to recover a low-rank tensor from its incomplete observations with outlier corruption. The recently proposed tensor ring (TR) model has demonstrated superiority in solving the RTC problem. However, the methods using the TR model either require a preassigned TR rank or aggressively pursue the minimum TR rank, where the latter often leads to biased solutions in the presence of noise. To tackle these bottlenecks, a Bayesian robust TR decomposition (BRTR) method is proposed to give a more accurate solution for the RTC problem, which can avoid exquisite selection of the TR rank and penalty parameters. A variational Bayesian (VB) algorithm is developed to infer the probability distribution of posteriors. During the learning process, BRTR can prune off zero components of core tensors, resulting in automatic TR rank determination. Extensive experiments show that BRTR can achieve significantly improved performance than other state-of-the-art methods.
引用
收藏
页码:4005 / 4018
页数:14
相关论文
共 67 条
  • [51] Xu L., 2020, arXiv
  • [52] ZeroNAS: Differentiable Generative Adversarial Networks Search for Zero-Shot Learning
    Yan, Caixia
    Chang, Xiaojun
    Li, Zhihui
    Guan, Weili
    Ge, Zongyuan
    Zhu, Lei
    Zheng, Qinghua
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (12) : 9733 - 9740
  • [53] Robust to Rank Selection: Low-Rank Sparse Tensor-Ring Completion
    Yu, Jinshi
    Zhou, Guoxu
    Sun, Weijun
    Xie, Shengli
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (05) : 2451 - 2465
  • [54] Low Tensor-Ring Rank Completion by Parallel Matrix Factorization
    Yu, Jinshi
    Zhou, Guoxu
    Li, Chao
    Zhao, Qibin
    Xie, Shengli
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2021, 32 (07) : 3020 - 3033
  • [55] Yu JS, 2019, INT CONF ACOUST SPEE, P3142, DOI 10.1109/ICASSP.2019.8683115
  • [56] Fast nonnegative tensor ring decomposition based on the modulus method and low-rank approximation
    Yu YuYuan
    Xie Kan
    Yu JinShi
    Jiang Qi
    Xie ShengLi
    [J]. SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2021, 64 (09) : 1843 - 1853
  • [57] Yuan LH, 2019, AAAI CONF ARTIF INTE, P9151
  • [58] Multiscale Feature Tensor Train Rank Minimization for Multidimensional Image Recovery
    Zhang, Hao
    Zhao, Xi-Le
    Jiang, Tai-Xiang
    Ng, Michael K.
    Huang, Ting-Zhu
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (12) : 13395 - 13410
  • [59] Hyperspectral Image Restoration Using Low-Rank Matrix Recovery
    Zhang, Hongyan
    He, Wei
    Zhang, Liangpei
    Shen, Huanfeng
    Yuan, Qiangqiang
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (08): : 4729 - 4743
  • [60] TN-ZSTAD: Transferable Network for Zero-Shot Temporal Activity Detection
    Zhang, Lingling
    Chang, Xiaojun
    Liu, Jun
    Luo, Minnan
    Li, Zhihui
    Yao, Lina
    Hauptmann, Alex
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (03) : 3848 - 3861