Bayesian Robust Tensor Ring Decomposition for Incomplete Multiway Data

被引:0
作者
Huang, Zhenhao [1 ,2 ]
Qiu, Yuning [1 ,3 ]
Chen, Xinqi [1 ,4 ]
Sun, Weijun [5 ,6 ]
Zhou, Guoxu [1 ,2 ]
机构
[1] Guangdong Univ Technol, Sch Automat, Guangzhou 510006, Peoples R China
[2] Guangdong Univ Technol, Key Lab Intelligent Detect & Internet Things Mfg, Minist Educ, Guangzhou 510006, Peoples R China
[3] RIKEN Ctr Adv Intelligence Project, Tokyo 1030027, Japan
[4] Guangdong Univ Technol, Key Lab Intelligent Informat Proc & Syst Integrat, Minist Educ, Guangzhou 510006, Peoples R China
[5] Guangdong Univ Technol, Ctr Intelligent Batch Mfg Based IoT Technol 111, Guangzhou 510006, Peoples R China
[6] Guangdong Univ Technol, Guangdong Key Lab IoT Informat Technol, Guangzhou 510006, Peoples R China
来源
IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS | 2024年 / 54卷 / 07期
基金
中国国家自然科学基金;
关键词
Automatic tensor ring (TR) rank determination; probability distribution; robust tensor completion (RTC); TR; variational Bayesian (VB) algorithm; TRAIN RANK; COMPLETION; IMAGE; ALGORITHMS;
D O I
10.1109/TSMC.2024.3375456
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Robust tensor completion (RTC) aims to recover a low-rank tensor from its incomplete observations with outlier corruption. The recently proposed tensor ring (TR) model has demonstrated superiority in solving the RTC problem. However, the methods using the TR model either require a preassigned TR rank or aggressively pursue the minimum TR rank, where the latter often leads to biased solutions in the presence of noise. To tackle these bottlenecks, a Bayesian robust TR decomposition (BRTR) method is proposed to give a more accurate solution for the RTC problem, which can avoid exquisite selection of the TR rank and penalty parameters. A variational Bayesian (VB) algorithm is developed to infer the probability distribution of posteriors. During the learning process, BRTR can prune off zero components of core tensors, resulting in automatic TR rank determination. Extensive experiments show that BRTR can achieve significantly improved performance than other state-of-the-art methods.
引用
收藏
页码:4005 / 4018
页数:14
相关论文
共 67 条
  • [1] Scalable tensor factorizations for incomplete data
    Acar, Evrim
    Dunlavy, Daniel M.
    Kolda, Tamara G.
    Morup, Morten
    [J]. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2011, 106 (01) : 41 - 56
  • [2] [Anonymous], 2009, P INT C NEUR INF PRO
  • [3] Efficient Tensor Completion for Color Image and Video Recovery: Low-Rank Tensor Train
    Bengua, Johann A.
    Phien, Ho N.
    Hoang Duong Tuan
    Do, Minh N.
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2017, 26 (05) : 2466 - 2479
  • [4] A SINGULAR VALUE THRESHOLDING ALGORITHM FOR MATRIX COMPLETION
    Cai, Jian-Feng
    Candes, Emmanuel J.
    Shen, Zuowei
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2010, 20 (04) : 1956 - 1982
  • [5] Exact Matrix Completion via Convex Optimization
    Candes, Emmanuel
    Recht, Benjamin
    [J]. COMMUNICATIONS OF THE ACM, 2012, 55 (06) : 111 - 119
  • [6] Robust Principal Component Analysis?
    Candes, Emmanuel J.
    Li, Xiaodong
    Ma, Yi
    Wright, John
    [J]. JOURNAL OF THE ACM, 2011, 58 (03)
  • [7] Impact of connected vehicle environment on driving performance: A case of an extra-long tunnel scenario
    Chang, Xin
    Rong, Jian
    Li, Haijian
    Wu, Yiping
    Zhao, Xiaohua
    [J]. IET INTELLIGENT TRANSPORT SYSTEMS, 2021, 15 (03) : 423 - 431
  • [8] Accommodating Multiple Tasks' Disparities With Distributed Knowledge-Sharing Mechanism
    Chen, Xinqi
    Zhou, Guoxu
    Wang, Yanjiao
    Hou, Ming
    Zhao, Qibin
    Xie, Shengli
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (04) : 2440 - 2452
  • [9] Cichocki A., 2014, ARXIV
  • [10] TENSOR RANK AND THE ILL-POSEDNESS OF THE BEST LOW-RANK APPROXIMATION PROBLEM
    de Silva, Vin
    Lim, Lek-Heng
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2008, 30 (03) : 1084 - 1127