RELAXED LAGRANGIAN DUALITY IN CONVEX INFINITE OPTIMIZATION: REVERSE STRONG DUALITY AND OPTIMALITY

被引:0
|
作者
Dinh N. [1 ,2 ]
Goberna M.A. [3 ]
López M.A. [3 ,4 ]
Volle M. [5 ]
机构
[1] Department of Mathematics, International University, VNU-HCM, Thu Duc
[2] Department of Mathematics, Vietnam National University - HCMC, Thu Duc
[3] Department of Mathematics, University of Alicante, Alicante
[4] Centre for Informatics and Applied Optimization (CIAO), Federation University, Ballarat
[5] Laboratoire de Mathématiques d’Avignon, EA 2151, Avignon University, Avignon
来源
关键词
Convex infinite programming; Haar duality; Lagrangian duality; Optimality;
D O I
10.23952/jano.4.2022.1.02
中图分类号
学科分类号
摘要
We associate with each convex optimization problem posed on some locally convex space with an infinite index set T, and a given non-empty family H formed by finite subsets of T, a suitable Lagrangian-Haar dual problem. We provide reverse H -strong duality theorems, H -Farkas type lemmas, and optimality theorems. Special attention is addressed to infinite and semi-infinite linear optimization problems. ©2022 Journal of Applied and Numerical Optimization
引用
收藏
页码:3 / 18
页数:15
相关论文
共 50 条
  • [1] Relaxed Larangian duality in convex infinite optimization: reducibility and strong duality
    Dinh, N.
    Goberna, M. A.
    Lopez-Cerda, M. A.
    Volle, M.
    OPTIMIZATION, 2023, 72 (01) : 189 - 214
  • [2] Duality in reverse convex optimization
    Lemaire, B
    SIAM JOURNAL ON OPTIMIZATION, 1998, 8 (04) : 1029 - 1037
  • [3] Lagrangian duality theorems for reverse convex infimization
    Singer, I
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2000, 21 (7-8) : 933 - 944
  • [4] A note on duality in reverse convex optimization
    Gwinner, Joachim
    OPTIMIZATION, 2024, 73 (12) : 3643 - 3651
  • [5] Duality in convex optimization for the hyperbolic augmented Lagrangian
    Ramirez, Lennin Mallma
    Maculan, Nelson
    Xavier, Adilson Elias
    Xavier, Vinicius Layter
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2024, 30 (02):
  • [6] Duality and optimality conditions for reverse convex programs via a convex decomposition
    Houda Keraoui
    Samir Fatajou
    Abdelmalek Aboussoror
    Rendiconti del Circolo Matematico di Palermo Series 2, 2023, 72 : 3917 - 3930
  • [7] Duality and optimality conditions for reverse convex programs via a convex decomposition
    Keraoui, Houda
    Fatajou, Samir
    Aboussoror, Abdelmalek
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2023, 72 (08) : 3917 - 3930
  • [8] New glimpses on convex infinite optimization duality
    M. A. Goberna
    M. A. López
    M. Volle
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2015, 109 : 431 - 450
  • [9] New glimpses on convex infinite optimization duality
    Goberna, M. A.
    Lopez, M. A.
    Volle, M.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2015, 109 (02) : 431 - 450
  • [10] Duality for convex infinite optimization on linear spaces
    M. A. Goberna
    M. Volle
    Optimization Letters, 2022, 16 : 2501 - 2510