Unconventional transport properties in systems with triply degenerate quadratic band crossings

被引:1
作者
Liu, Zhihai [1 ]
Wang, Luyang [1 ]
Yao, Dao-Xin [2 ,3 ]
机构
[1] Shenzhen Univ, Coll Phys & Optoelect Engn, Shenzhen 518060, Peoples R China
[2] Sun Yat Sen Univ, Sch Phys, State Key Lab Optoelect Mat & Technol, Guangzhou 510275, Peoples R China
[3] Int Quantum Acad, Shenzhen 518048, Peoples R China
基金
中国国家自然科学基金;
关键词
TOPOLOGICAL DIRAC SEMIMETAL; ANOMALOUS LANDAU-LEVELS; WEYL FERMION SEMIMETAL; BERRYS PHASE; GRAPHENE; DISCOVERY;
D O I
10.1103/PhysRevB.109.115412
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A quadratic band crossing (QBC) is a crossing of two bands with quadratic dispersion, which has been intensively investigated due to its appearance in Bernal -stacked bilayer graphene. Here, we study an extension of QBCs, the triply degenerate quadratic band crossing (TQBC), which is a three -band crossing node containing two quadratic dispersing bands and a flat band. We focus on two types of TQBCs. The first type contains a symmetry -protected QBC and a free -electron band, the prototype of which is the AA -stacked bilayer squareoctagon lattice. In a magnetic field, such a TQBC exhibits an anomalous Landau level structure, leading to a distinctive quantum Hall effect, which displays an infinite ladder of Hall plateaus when the chemical potential approaches zero. The other type of TQBC can be viewed as a pseudospin-1 extension of the bilayer-graphene QBC. Under perturbations, this type of TQBCs may split into linear pseudospin-1 Dirac-Weyl fermions. When tunneling through a potential barrier, the transmission probability of the first type decays exponentially with the barrier width for any incident angle, similar to the free -electron case, while the second type hosts an all -angle perfect reflection when the energy of the incident particles is equal to half the barrier height.
引用
收藏
页数:10
相关论文
共 80 条
[1]   Flat bands, Dirac cones, and atom dynamics in an optical lattice [J].
Apaja, V. ;
Hyrkas, M. ;
Manninen, M. .
PHYSICAL REVIEW A, 2010, 82 (04)
[2]  
aps, About us, DOI [10.1103/PhysRevB.109.115412, DOI 10.1103/PHYSREVB.109.115412]
[3]   Weyl and Dirac semimetals in three-dimensional solids [J].
Armitage, N. P. ;
Mele, E. J. ;
Vishwanath, Ashvin .
REVIEWS OF MODERN PHYSICS, 2018, 90 (01)
[4]   Bilayer graphene with single and multiple electrostatic barriers: Band structure and transmission [J].
Barbier, Michael ;
Vasilopoulos, P. ;
Peeters, F. M. ;
Pereira, J. Milton, Jr. .
PHYSICAL REVIEW B, 2009, 79 (15)
[5]   Colloquium: Andreev reflection and Klein tunneling in graphene [J].
Beenakker, C. W. J. .
REVIEWS OF MODERN PHYSICS, 2008, 80 (04) :1337-1354
[6]   Massless Dirac-Weyl fermions in a T3 optical lattice [J].
Bercioux, D. ;
Urban, D. F. ;
Grabert, H. ;
Haeusler, W. .
PHYSICAL REVIEW A, 2009, 80 (06)
[7]   Direct geometric probe of singularities in band structure [J].
Brown, Charles D. ;
Chang, Shao-Wen ;
Schwarz, Malte N. ;
Leung, Tsz-Him ;
Kozii, Vladyslav ;
Avdoshkin, Alexander ;
Moore, Joel E. ;
Stamper-Kurn, Dan .
SCIENCE, 2022, 377 (6612) :1319-1322
[8]   Topological semimetals [J].
Burkov, A. A. .
NATURE MATERIALS, 2016, 15 (11) :1145-1148
[9]   Weyl Semimetal in a Topological Insulator Multilayer [J].
Burkov, A. A. ;
Balents, Leon .
PHYSICAL REVIEW LETTERS, 2011, 107 (12)
[10]   Biased bilayer graphene: Semiconductor with a gap tunable by the electric field effect [J].
Castro, Eduardo V. ;
Novoselov, K. S. ;
Morozov, S. V. ;
Peres, N. M. R. ;
Dos Santos, J. M. B. Lopes ;
Nilsson, Johan ;
Guinea, F. ;
Geim, A. K. ;
Castro Neto, A. H. .
PHYSICAL REVIEW LETTERS, 2007, 99 (21)