Discovery of alkaline laccases from basidiomycete fungi through machine learning-based approach

被引:0
作者
Wan, Xing [1 ]
Shahrear, Sazzad [1 ]
Chew, Shea Wen [1 ]
Vilaplana, Francisco [2 ]
Makela, Miia R. [1 ,3 ]
机构
[1] Univ Helsinki, Fac Agr & Forestry, Dept Microbiol, Bioctr 1,Viikinkaari 9, Helsinki 00790, Finland
[2] AlbaNova Univ Ctr, KTH Royal Inst Technol, Sch Engn Sci Chem, Div Glycosci,Dept Chem, Roslagstullbacken 21, S-11421 Stockholm, Sweden
[3] Aalto Univ, Dept Bioprod & Biosyst, Kemistintie 1, Espoo 02150, Finland
来源
BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS | 2024年 / 17卷 / 01期
关键词
Machine learning; Alkaline laccase; pH optimum; Prediction; Basidiomycete fungi; PROTEIN-STRUCTURE; RATIONAL DESIGN; PH; SURFACE; PREDICTION;
D O I
10.1186/s13068-024-02566-6
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
BackgroundLaccases can oxidize a broad spectrum of substrates, offering promising applications in various sectors, such as bioremediation, biomass fractionation in future biorefineries, and synthesis of biochemicals and biopolymers. However, laccase discovery and optimization with a desirable pH optimum remains a challenge due to the labor-intensive and time-consuming nature of the traditional laboratory methods.ResultsThis study presents a machine learning (ML)-integrated approach for predicting pH optima of basidiomycete fungal laccases, utilizing a small, curated dataset against a vast metagenomic data. Comparative computational analyses unveiled the structural and pH-dependent solubility differences between acidic and neutral-alkaline laccases, helping us understand the molecular bases of enzyme pH optimum. The pH profiling of the two ML-predicted alkaline laccase candidates from the basidiomycete fungus Lepista nuda further validated our computational approach, showing the accuracy of this comprehensive method.ConclusionsThis study uncovers the efficacy of ML in the prediction of enzyme pH optimum from minimal datasets, marking a significant step towards harnessing computational tools for systematic screening of enzymes for biotechnology applications.
引用
收藏
页数:15
相关论文
共 69 条
  • [1] Enzyme engineering: Reshaping the biocatalytic functions
    Ali, Misha
    Ishqi, Hassan Mubarak
    Husain, Qayyum
    [J]. BIOTECHNOLOGY AND BIOENGINEERING, 2020, 117 (06) : 1877 - 1894
  • [2] Precision enzyme discovery through targeted mining of metagenomic data
    Ariaeenejad, Shohreh
    Gharechahi, Javad
    Foroozandeh Shahraki, Mehdi
    Fallah Atanaki, Fereshteh
    Han, Jian-Lin
    Ding, Xue-Zhi
    Hildebrand, Falk
    Bahram, Mohammad
    Kavousi, Kaveh
    Hosseini Salekdeh, Ghasem
    [J]. NATURAL PRODUCTS AND BIOPROSPECTING, 2024, 14 (01)
  • [3] Engineering of a fungal laccase to develop a robust, versatile and highly-expressed biocatalyst for sustainable chemistry
    de Salas, Felipe
    Aza, Pablo
    Gilabert, Joan F.
    Santiago, Gerard
    Kilic, Sibel
    Sener, Mehmet E.
    Vind, Jesper
    Guallar, Victor
    Martinez, Angel T.
    Camarero, Susana
    [J]. GREEN CHEMISTRY, 2019, 21 (19) : 5374 - 5385
  • [4] pH-Dependent Conformational Changes in Proteins and Their Effect on Experimental pKas: The Case of Nitrophorin 4
    Di Russo, Natali V.
    Estrin, Dario A.
    Marti, Marcelo A.
    Roitberg, Adrian E.
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2012, 8 (11)
  • [5] The carbohydrate-active enzyme database: functions and literature
    Drula, Elodie
    Garron, Marie-Line
    Dogan, Suzan
    Lombard, Vincent
    Henrissat, Bernard
    Terrapon, Nicolas
    [J]. NUCLEIC ACIDS RESEARCH, 2022, 50 (D1) : D571 - D577
  • [6] MUSCLE: multiple sequence alignment with high accuracy and high throughput
    Edgar, RC
    [J]. NUCLEIC ACIDS RESEARCH, 2004, 32 (05) : 1792 - 1797
  • [7] Amino acid encoding for deep learning applications
    ElAbd, Hesham
    Bromberg, Yana
    Hoarfrost, Adrienne
    Lenz, Tobias
    Franke, Andre
    Wendorff, Mareike
    [J]. BMC BIOINFORMATICS, 2020, 21 (01)
  • [8] Gado JE, 2024, bioRxiv, DOI [10.1101/2023.06.22.544776, 10.1101/2023.06.22.544776, DOI 10.1101/2023.06.22.544776]
  • [9] Machine learning modeling of family wide enzyme-substrate specificity screens
    Goldman, Samuel
    Das, Ria
    Yang, Kevin K.
    Coley, Connor W.
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2022, 18 (02)
  • [10] A guide to machine learning for biologists
    Greener, Joe G.
    Kandathil, Shaun M.
    Moffat, Lewis
    Jones, David T.
    [J]. NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2022, 23 (01) : 40 - 55