Image processing techniques to identify tomato quality under market conditions

被引:6
作者
Abekoon, Thilina [1 ]
Sajindra, Hirushan [1 ]
Jayakody, J. A. D. C. A. [2 ]
Samarakoon, E. R. J. [3 ]
Rathnayake, Upaka [4 ]
机构
[1] Water Resources Management & Soft Comp Res Lab, Athurugiriya, Millennium City 10150, Sri Lanka
[2] Sri Lanka Inst Informat Technol SLIIT, Fac Comp, New Kandy Rd, Malabe 10115, Sri Lanka
[3] Univ Peradeniya, Fac Agr, Dept Food Sci & Technol, Peradeniya 20400, Sri Lanka
[4] Atlantic Technol Univ, Fac Engn & Design, Dept Civil Engn & Construct, Sligo F91 YW50, Ireland
来源
SMART AGRICULTURAL TECHNOLOGY | 2024年 / 7卷
关键词
Image processing; Post harvest technology; Tomato; Machine learning; Convolutional neural network; Classification; NEURAL-NETWORK; SYSTEM;
D O I
10.1016/j.atech.2024.100433
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
Tomatoes are essential in both agriculture and culinary spheres, demanding rigorous quality assessment. It is highly advantageous to discern the maturity level and the time range post-harvesting of tomatoes in the market through visual analysis of their images. This research endeavors to forecast tomato quality by accurately determining the maturity level and the duration post-harvest, specifically tailored to Sri Lankan market conditions, with a particular focus on Padma tomatoes. It identifies maturity stages (Green, Breakers, Turning, Pink, Light Red, Red) and post-harvest dates using image processing techniques. Greenhouse-grown Padma tomatoes mimic market conditions for image capture, and Convolutional Neural Networks facilitate this analysis. Model 1, using ReLU and sigmoid activation functions, accurately classifies tomatoes with 99 % training and validation accuracy. Model 2, with seven classes, achieves 99 % training and 98 % validation accuracy using ReLU and softmax activation functions. Integration of the IPGRI/IITA 1998 classification method enhances tomato categorization. Efficient tomato image screening optimizes resource use. This study successfully determines Padma tomato post-harvest dates based on maturity stages, a significant contribution to tomato quality assessment under market conditions.
引用
收藏
页数:12
相关论文
共 57 条
[1]  
Agarap A.F., 2018, arXiv
[2]  
agrimin, 2023, Crop production program
[3]  
Babatola L. A., 2008, Journal of Biological Sciences, V8, P490
[4]   Comparison of Classic Classifiers, Metaheuristic Algorithms and Convolutional Neural Networks in Hyperspectral Classification of Nitrogen Treatment in Tomato Leaves [J].
Benmouna, Brahim ;
Pourdarbani, Raziyeh ;
Sabzi, Sajad ;
Fernandez-Beltran, Ruben ;
Garcia-Mateos, Gines ;
Miguel Molina-Martinez, Jose .
REMOTE SENSING, 2022, 14 (24)
[5]   Tissue culture studies of tomato (Lycopersicon esculentum) [J].
Bhatia, P ;
Ashwath, N ;
Senaratna, T ;
Midmore, D .
PLANT CELL TISSUE AND ORGAN CULTURE, 2004, 78 (01) :1-21
[6]   Drying of tomatoes and tomato processing waste: a critical review of the quality aspects [J].
Bhatkar, Nikita S. ;
Shirkole, Shivanand S. ;
Mujumdar, Arun S. ;
Thorat, Bhaskar N. .
DRYING TECHNOLOGY, 2021, 39 (11) :1720-1744
[7]   Data fusion methodologies for food and beverage authentication and quality assessment - A review [J].
Borras, Eva ;
Ferre, Joan ;
Boque, Ricard ;
Mestres, Montserrat ;
Acena, Laura ;
Busto, Olga .
ANALYTICA CHIMICA ACTA, 2015, 891 :1-14
[8]   YOLOv4-Driven Appearance Grading Filing Mechanism: Toward a High-Accuracy Tomato Grading Model through a Deep-Learning Framework [J].
Cheng, Yu-Huei ;
Tseng, Cheng-Yen ;
Nguyen, Duc-Man ;
Lin, Yu-Da .
MATHEMATICS, 2022, 10 (18)
[9]   Bioaccessibility of Macrominerals and Trace Elements from Tomato (Solanum lycopersicum L.) Farmers' Varieties [J].
Ciudad-Mulero, Maria ;
Pinela, Jose ;
Carvalho, Ana Maria ;
Barros, Lillian ;
Fernandez-Ruiz, Virginia ;
Ferreira, Isabel C. F. R. ;
Sanchez-Mata, Maria de Cortes ;
Morales, Patricia .
FOODS, 2022, 11 (13)
[10]  
Csurka G., 2004, APSIPA Trans. Signal Inf. Process., DOI DOI 10.1017/ATSIP.2015.19