Short-term prediction of atrial fibrillation from ambulatory monitoring ECG using a deep neural network

被引:14
作者
Singh, Jagmeet P. [1 ]
Fontanarava, Julien [2 ]
de Masse, Gregoire [2 ]
Carbonati, Tanner [2 ]
Li, Jia [2 ]
Henry, Christine [2 ]
Fiorina, Laurent [3 ]
机构
[1] Massachusetts Gen Hosp, 55 Fruit St, Boston, MA 02114 USA
[2] Cardiologs, 136 Rue St Denis, F-75002 Paris, France
[3] Hop Prive Jacques Cartier, Inst Cardiovasc Paris Sud, Ramsay Sante, F-91300 Massy, France
来源
EUROPEAN HEART JOURNAL - DIGITAL HEALTH | 2022年 / 3卷 / 02期
关键词
Atrial fibrillation; Risk prediction; Deep learning; Holter; Ambulatory monitoring; RISK; INTERVAL; STROKE;
D O I
10.1093/ehjdh/ztac014
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
AimsAtrial fibrillation (AF) is associated with significant morbidity but remains underdiagnosed. A 24 h ambulatory electrocardiogram (ECG) is largely used as a tool to document AF but yield remains limited. We hypothesize that a deep learning model can identify patients at risk of AF in the 2 weeks following a 24 h ambulatory ECG with no documented AF.Methods and resultsWe identified a training set of Holter recordings of 7-15 days duration, in which no AF could be found in the first 24 h. We trained a neural network to predict the presence or absence of AF in the 15 following days, using only the first 24 h of the recording. We evaluated the neural network on a testing set and an external data set not used during algorithm development. In the testing data set, out of 9993 Holters with no AF on the first day, we found 361 (4%) recordings with AF within the 15 subsequent days of monitoring [5808, 218 (4%), respectively in the external data set]. The neural network could discriminate future AF with an area under the receiver operating curve, a sensitivity, and specificity of 79.4%, 76%, and 69%, respectively (75.8%, 78%, and 58% in the external data set), and outperformed ECG features previously shown to be predictive of AF.ConclusionWe show here the very first study of short-term AF prediction using 24 h Holter monitoring. This could help identify patients who would benefit the most from longer recordings and proactively initiate treatment and AF mitigation strategies in high-risk patients. Graphical AbstractAF prediction ensemble model derived from 24-hour Holter data.
引用
收藏
页码:208 / 217
页数:10
相关论文
共 24 条
[1]   An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction [J].
Attia, Zachi, I ;
Noseworthy, Peter A. ;
Lopez-Jimenez, Francisco ;
Asirvatham, Samuel J. ;
Deshmukh, Abhishek J. ;
Gersh, Bernard J. ;
Carter, Rickey E. ;
Yao, Xiaoxi ;
Rabinstein, Alejandro A. ;
Erickson, Brad J. ;
Kapa, Suraj ;
Friedman, Paul A. .
LANCET, 2019, 394 (10201) :861-867
[2]   Simple predictors for new onset atrial fibrillation [J].
Cabrera, Sandra ;
Valles, Ermengol ;
Benito, Begona ;
Alcalde, Oscar ;
Jimenez, Jesus ;
Fan, Roger ;
Marti-Almor, Julio .
INTERNATIONAL JOURNAL OF CARDIOLOGY, 2016, 221 :515-520
[3]   Frequent premature atrial complexes predict new occurrence of atrial fibrillation and adverse cardiovascular events [J].
Chong, Boon-Hor ;
Pong, Vincent ;
Lam, Kwok-Fai ;
Liu, Shasha ;
Zuo, Ming-Liang ;
Lau, Yuk-Fai ;
Lau, Chu-Pak ;
Tse, Hung-Fat ;
Siu, Chung-Wah .
EUROPACE, 2012, 14 (07) :942-947
[4]   Population based study of early risk of stroke after transient ischaemic attack or minor stroke: implications for public education and organisation of services [J].
Coull, AJ ;
Lovett, JK ;
Rothwell, PM .
BMJ-BRITISH MEDICAL JOURNAL, 2004, 328 (7435) :326-328
[5]   Atrial Ectopy as a Predictor of Incident Atrial Fibrillation A Cohort Study [J].
Dewland, Thomas A. ;
Vittinghoff, Eric ;
Mandyam, Mala C. ;
Heckbert, Susan R. ;
Siscovick, David S. ;
Stein, Phyllis K. ;
Psaty, Bruce M. ;
Sotoodehnia, Nona ;
Gottdiener, John S. ;
Marcus, Gregory M. .
ANNALS OF INTERNAL MEDICINE, 2013, 159 (11) :721-+
[6]   Atrial Fibrillation in Patients with Cryptogenic Stroke [J].
Gladstone, David J. ;
Spring, Melanie ;
Dorian, Paul ;
Panzov, Val ;
Thorpe, Kevin E. ;
Hall, Judith ;
Vaid, Haris ;
O'Donnell, Martin ;
Laupacis, Andreas ;
Cote, Robert ;
Sharma, Mukul ;
Blakely, John A. ;
Shuaib, Ashfaq ;
Hachinski, Vladimir ;
Coutts, Shelagh B. ;
Sahlas, Demetrios J. ;
Teal, Phil ;
Yip, Samuel ;
Spence, J. David ;
Buck, Brian ;
Verreault, Steve ;
Casaubon, Leanne K. ;
Penn, Andrew ;
Selchen, Daniel ;
Jin, Albert ;
Howse, David ;
Mehdiratta, Manu ;
Boyle, Karl ;
Aviv, Richard ;
Kapral, Moira K. ;
Mamdani, Muhammad .
NEW ENGLAND JOURNAL OF MEDICINE, 2014, 370 (26) :2467-2477
[7]  
Hindricks G, 2021, EUR HEART J, V42, P546, DOI [10.1093/eurheartj/ehaa945, 10.1093/eurheartj/ehaa612]
[8]  
January CT, 2019, J AM COLL CARDIOL, V74, P104, DOI [10.1161/CIR.0000000000000665, 10.1016/j.jacc.2019.01.011]
[9]   LayerCAM: Exploring Hierarchical Class Activation Maps for Localization [J].
Jiang, Peng-Tao ;
Zhang, Chang-Bin ;
Hou, Qibin ;
Cheng, Ming-Ming ;
Wei, Yunchao .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 :5875-5888
[10]   Epidemiology of Atrial Fibrillation in the 21st Century Novel Methods and New Insights [J].
Kornej, Jelena ;
Borschel, Christin S. ;
Benjamin, Emelia ;
Schnabel, Renate B. .
CIRCULATION RESEARCH, 2020, 127 (01) :4-20