On the Automated Unruptured Intracranial Aneurysm Segmentation From TOF-MRA Using Deep Learning Techniques

被引:1
作者
Anima, V. A. [1 ]
Nair, Madhu S. [1 ]
机构
[1] Cochin Univ Sci & Technol, Dept Comp Sci, Artificial Intelligence & Comp Vis Lab, Kochi 682022, Kerala, India
关键词
Aneurysm; computer-aided detection; time of flight-magnetic resonance angiography; unruptured intracranial aneurysm; dice similarity coefficient; ANGIOGRAPHY;
D O I
10.1109/ACCESS.2024.3387535
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Aneurysms pose a life-threatening risk due to weakened vessel walls, causing bulging or ballooning in arterial blood vessels. The growth of an aneurysm increases the risk of rupture and consequent bleeding in the brain, leading to a hemorrhagic stroke. Therefore, accurate detection and segmentation of intracranial aneurysms are crucial for treatment planning in patients. Recently, the use of Time of Flight Magnetic Resonance Angiography (TOF-MRA) for automated segmentation of intracranial aneurysms has gained significant importance. This study comprehensively evaluates different automated segmentation methods for unruptured intracranial aneurysms, using the publicly available Aneurysm Detection and Segmentation (ADAM) challenge dataset. The performance and method scalability of these methods is analyzed across state-of-the-art algorithms, and the experimental analysis shows that 3D U-Net architecture outperforms in the segmentation tasks.
引用
收藏
页码:53112 / 53125
页数:14
相关论文
共 41 条
[1]  
Bengio Y., 2016, Deep Learning, V29, P7553
[2]   A Systematic Review of Deep-Learning Methods for Intracranial Aneurysm Detection in CT Angiography [J].
Bizjak, Ziga ;
Spiclin, Ziga .
BIOMEDICINES, 2023, 11 (11)
[3]   Automated segmentation of cerebral vasculature with aneurysms in 3DRA and TOF-MRA using geodesic active regions: An evaluation study [J].
Bogunovic, Hrvoje ;
Maria Pozo, Jose ;
Cruz Villa-Uriol, Maria ;
Majoie, Charles B. L. M. ;
van den Berg, Rene ;
van Andel, Hugo A. F. Gratama ;
Macho, Juan M. ;
Blasco, Jordi ;
San Roman, Luis ;
Frangi, Alejandro F. .
MEDICAL PHYSICS, 2011, 38 (01) :210-222
[4]   Unruptured intracranial aneurysms: epidemiology, natural history, management options, and familial screening [J].
Brown, Robert D., Jr. ;
Broderick, Jrioseph P. .
LANCET NEUROLOGY, 2014, 13 (04) :393-404
[5]   Observer studies involving detection and localization: Modeling, analysis, and validation [J].
Chakraborty, DP ;
Berbaum, KS .
MEDICAL PHYSICS, 2004, 31 (08) :2313-2330
[6]   Active contours without edges [J].
Chan, TF ;
Vese, LA .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2001, 10 (02) :266-277
[7]   Dense, deep learning-based intracranial aneurysm detection on TOF MRI using two-stage regularized U-Net [J].
Claux, Frederic ;
Baudouin, Maxime ;
Bogey, Clement ;
Rouchaud, Aymeric .
JOURNAL OF NEURORADIOLOGY, 2023, 50 (01) :9-15
[8]   Generative Adversarial Networks An overview [J].
Creswell, Antonia ;
White, Tom ;
Dumoulin, Vincent ;
Arulkumaran, Kai ;
Sengupta, Biswa ;
Bharath, Anil A. .
IEEE SIGNAL PROCESSING MAGAZINE, 2018, 35 (01) :53-65
[9]   Towards Automated Brain Aneurysm Detection in TOF-MRA: Open Data, Weak Labels, and Anatomical Knowledge [J].
Di Noto, Tommaso ;
Marie, Guillaume ;
Tourbier, Sebastien ;
Aleman-Gomez, Yasser ;
Esteban, Oscar ;
Saliou, Guillaume ;
Cuadra, Meritxell Bach ;
Hagmann, Patric ;
Richiardi, Jonas .
NEUROINFORMATICS, 2023, 21 (01) :21-34
[10]   ResUNet-a: A deep learning framework for semantic segmentation of remotely sensed data [J].
Diakogiannis, Foivos, I ;
Waldner, Francois ;
Caccetta, Peter ;
Wu, Chen .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2020, 162 :94-114