Machine learning in preclinical drug discovery

被引:55
作者
Catacutan, Denise B. [1 ,2 ,3 ]
Alexander, Jeremie [1 ,2 ,3 ]
Arnold, Autumn [1 ,2 ,3 ]
Stokes, Jonathan M. [1 ,2 ,3 ]
机构
[1] McMaster Univ, Dept Biochem & Biomed Sci, Hamilton, ON, Canada
[2] McMaster Univ, Michael G DeGroote Inst Infect Dis Res, Hamilton, ON, Canada
[3] McMaster Univ, David Braley Ctr Antibiot Discovery, Hamilton, ON, Canada
基金
加拿大健康研究院;
关键词
LANGUAGE; PREDICTION; DESIGN; MODELS;
D O I
10.1038/s41589-024-01679-1
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Drug-discovery and drug-development endeavors are laborious, costly and time consuming. These programs can take upward of 12 years and cost US $2.5 billion, with a failure rate of more than 90%. Machine learning (ML) presents an opportunity to improve the drug-discovery process. Indeed, with the growing abundance of public and private large-scale biological and chemical datasets, ML techniques are becoming well positioned as useful tools that can augment the traditional drug-development process. In this Perspective, we discuss the integration of algorithmic methods throughout the preclinical phases of drug discovery. Specifically, we highlight an array of ML-based efforts, across diverse disease areas, to accelerate initial hit discovery, mechanism-of-action (MOA) elucidation and chemical property optimization. With advances in the application of ML across diverse therapeutic areas, we posit that fully ML-integrated drug-discovery pipelines will define the future of drug-development programs. This Perspective discusses the application of algorithmic methods throughout the preclinical phases of drug discovery to accelerate initial hit discovery, mechanism-of-action elucidation and chemical property optimization.
引用
收藏
页码:960 / 973
页数:14
相关论文
共 116 条
[1]   Supercomputer-Based Ensemble Docking Drug Discovery Pipeline with Application to Covid-19 [J].
Acharya, A. ;
Agarwal, R. ;
Baker, M. B. ;
Baudry, J. ;
Bhowmik, D. ;
Boehm, S. ;
Byler, K. G. ;
Chen, S. Y. ;
Coates, L. ;
Cooper, C. J. ;
Demerdash, O. ;
Daidone, I ;
Eblen, J. D. ;
Ellingson, S. ;
Forli, S. ;
Glaser, J. ;
Gumbart, J. C. ;
Gunnels, J. ;
Hernandez, O. ;
Irle, S. ;
Kneller, D. W. ;
Kovalevsky, A. ;
Larkin, J. ;
Lawrence, T. J. ;
LeGrand, S. ;
Liu, S-H ;
Mitchell, J. C. ;
Park, G. ;
Parks, J. M. ;
Pavlova, A. ;
Petridis, L. ;
Poole, D. ;
Pouchard, L. ;
Ramanathan, A. ;
Rogers, D. M. ;
Santos-Martins, D. ;
Scheinberg, A. ;
Sedova, A. ;
Shen, Y. ;
Smith, J. C. ;
Smith, M. D. ;
Soto, C. ;
Tsaris, A. ;
Thavappiragasam, M. ;
Tillack, A. F. ;
Vermaas, J. V. ;
Vuong, V. Q. ;
Yin, J. ;
Yoo, S. ;
Zahran, M. .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2020, 60 (12) :5832-5852
[2]   CACHE (Critical Assessment of Computational Hit-finding Experiments): A public-private partnership benchmarking initiative to enable the development of computational methods for hit-finding [J].
Ackloo, Suzanne ;
Al-awar, Rima ;
Amaro, Rommie E. ;
Arrowsmith, Cheryl H. ;
Azevedo, Hatylas ;
Batey, Robert A. ;
Bengio, Yoshua ;
Betz, Ulrich A. K. ;
Bologa, Cristian G. ;
Chodera, John D. ;
Cornell, Wendy D. ;
Dunham, Ian ;
Ecker, Gerhard F. ;
Edfeldt, Kristina ;
Edwards, Aled M. ;
Gilson, Michael K. ;
Gordijo, Claudia R. ;
Hessler, Gerhard ;
Hillisch, Alexander ;
Hogner, Anders ;
Irwin, John J. ;
Jansen, Johanna M. ;
Kuhn, Daniel ;
Leach, Andrew R. ;
Lee, Alpha A. ;
Lessel, Uta ;
Morgan, Maxwell R. ;
Moult, John ;
Muegge, Ingo ;
Oprea, Tudor, I ;
Perry, Benjamin G. ;
Riley, Patrick ;
Rousseaux, Sophie A. L. ;
Saikatendu, Kumar Singh ;
Santhakumar, Vijayaratnam ;
Schapira, Matthieu ;
Scholten, Cora ;
Todd, Matthew H. ;
Vedadi, Masoud ;
Volkamer, Andrea ;
Willson, Timothy M. .
NATURE REVIEWS CHEMISTRY, 2022, 6 (04) :287-295
[3]   Comparison of logP and logD correction models trained with public and proprietary data sets [J].
Aliagas, Ignacio ;
Gobbi, Alberto ;
Lee, Man-Ling ;
Sellers, Benjamin D. .
JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2022, 36 (03) :253-262
[4]  
[Anonymous], 2021, DoD Launches Center of Excellence in Artificial Intelligence and Machine Learning at Howard University
[5]   Generative Models as an Emerging Paradigm in the Chemical Sciences [J].
Anstine, Dylan M. ;
Isayev, Olexandr .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2023, 145 (16) :8736-8750
[6]   Applications of machine learning in microbial natural product drug discovery [J].
Arnold, Autumn ;
Alexander, Jeremie ;
Liu, Gary ;
Stokes, Jonathan M. .
EXPERT OPINION ON DRUG DISCOVERY, 2023, 18 (11) :1259-1272
[7]   Accurate prediction of protein structures and interactions using a three-track neural network [J].
Baek, Minkyung ;
DiMaio, Frank ;
Anishchenko, Ivan ;
Dauparas, Justas ;
Ovchinnikov, Sergey ;
Lee, Gyu Rie ;
Wang, Jue ;
Cong, Qian ;
Kinch, Lisa N. ;
Schaeffer, R. Dustin ;
Millan, Claudia ;
Park, Hahnbeom ;
Adams, Carson ;
Glassman, Caleb R. ;
DeGiovanni, Andy ;
Pereira, Jose H. ;
Rodrigues, Andria V. ;
van Dijk, Alberdina A. ;
Ebrecht, Ana C. ;
Opperman, Diederik J. ;
Sagmeister, Theo ;
Buhlheller, Christoph ;
Pavkov-Keller, Tea ;
Rathinaswamy, Manoj K. ;
Dalwadi, Udit ;
Yip, Calvin K. ;
Burke, John E. ;
Garcia, K. Christopher ;
Grishin, Nick V. ;
Adams, Paul D. ;
Read, Randy J. ;
Baker, David .
SCIENCE, 2021, 373 (6557) :871-+
[8]   MolGPT: Molecular Generation Using a Transformer-Decoder Model [J].
Bagal, Viraj ;
Aggarwal, Rishal ;
Vinod, P. K. ;
Priyakumar, U. Deva .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2022, 62 (09) :2064-2076
[9]   De Novo Design of Nurr1 Agonists via Fragment-Augmented Generative Deep Learning in Low-Data Regime [J].
Ballarotto, Marco ;
Willems, Sabine ;
Stiller, Tanja ;
Nawa, Felix ;
Marschner, Julian A. A. ;
Grisoni, Francesca ;
Merk, Daniel .
JOURNAL OF MEDICINAL CHEMISTRY, 2023, 66 (12) :8170-8177
[10]   A practical guide to large-scale docking [J].
Bender, Brian J. ;
Gahbauer, Stefan ;
Luttens, Andreas ;
Lyu, Jiankun ;
Webb, Chase M. ;
Stein, Reed M. ;
Fink, Elissa A. ;
Balius, Trent E. ;
Carlsson, Jens ;
Irwin, John J. ;
Shoichet, Brian K. .
NATURE PROTOCOLS, 2021, 16 (10) :4799-4832