Strengthen oriented poly (L-lactic acid) monofilaments via mechanical training

被引:0
|
作者
Zhang, Yan [1 ]
Dong, Xuechun [1 ]
Zhang, Chen [1 ]
Wu, Xiongyu [1 ]
Cheng, Jie [1 ]
Wu, Gensheng [2 ]
Sun, Renhua [3 ]
Ni, Zhonghua [1 ,4 ]
Zhao, Gutian [1 ,4 ]
机构
[1] Southeast Univ, Sch Mech Engn, Jiangsu Key Lab Design & Manufacture Micronano Bio, Nanjing 211189, Peoples R China
[2] Nanjing Forestry Univ, Sch Mech & Elect Engn, Nanjing 210037, Peoples R China
[3] Nangjing Univ, Yancheng Hosp 1, Dept Cardiol, Affiliated Hosp,Med Sch, Yancheng 224006, Peoples R China
[4] Southeast Univ, Sch Mech Engn, 79 Suyuan Ave, Nanjing 211189, Peoples R China
关键词
Poly (L -lactic acid); Mechanical training; Mechanical properties; STENTS; BIOMATERIALS; PERFORMANCE; MORPHOLOGY; PHASE; PLLA;
D O I
10.1016/j.ijbiomac.2024.129975
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Polymer materials have found extensive applications in the clinical and medical domains due to their exceptional biocompatibility and biodegradability. Compared to metallic counterparts, polymers, particularly Poly (L -lactic acid) (PLLA), are more suitable for fabricating biodegradable stents. As a viscoelastic material, PLLA monofilaments exhibit a creep phenomenon under sustained tensile stress. This study explores the use of creep to enhance the mechanical attributes of PLLA monofilaments. By subjecting the highly oriented monofilaments to controlled, constant force stretching, we achieved notable improvements in their mechanical characteristics. The results, as confirmed by tensile testing and dynamic mechanical analysis, revealed a remarkable 67 % increase in total elongation and over a 20 % rise in storage modulus post -mechanical training. Further microscopic analyses, including Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM), revealed enhanced spacing and cavity formation. These mechanical advancements are attributed to the unraveling and a more orderly arrangement of molecular chains in the amorphous regions. This investigation offers a promising approach for augmenting the mechanical properties of PLLA monofilaments, potentially benefiting their application in biomedical engineering.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] The difference of equilibrium melting point between poly(l-lactic acid) and poly(l-lactic acid)/poly(d-lactic acid) blends: cases with three molecular weights
    Guo, Weijie
    Shao, Jun
    Ye, Xinxin
    Sun, Peng
    Meng, Chunfeng
    Li, Zhaolei
    Zheng, Zhiping
    Yan, Chao
    POLYMER INTERNATIONAL, 2019, 68 (02) : 271 - 276
  • [22] Poly(L-lactic acid)/poly(glycolic acid) microfibrillar polymer-polymer composites: Preparation and viscoelastic properties
    Kimble, L. D.
    Fakirov, S.
    Bhattacharyya, D.
    PROCEEDINGS OF PPS-30: THE 30TH INTERNATIONAL CONFERENCE OF THE POLYMER PROCESSING SOCIETY, 2015, 1664
  • [23] Magnesium phenylphosphonate: a additive for poly(L-lactic acid)
    Cai, Yan-Hua
    Zhao, Li-Sha
    MATERIALS RESEARCH EXPRESS, 2017, 4 (03):
  • [24] Effect of tin on poly(L-lactic acid) pyrolysis
    Nishida, H
    Mori, T
    Hoshihara, S
    Fan, YJ
    Shirai, Y
    Endo, T
    POLYMER DEGRADATION AND STABILITY, 2003, 81 (03) : 515 - 523
  • [25] Properties of poly (L-lactic acid) reinforced by L-lactic acid grafted nanocellulose crystal
    Wang, Kaili
    Lu, Jianxiao
    Tusiime, Rogers
    Yang, Yun
    Fan, Fan
    Zhang, Hui
    Ma, Bomou
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2020, 156 : 314 - 320
  • [26] Aligned core/shell electrospinning of poly(glycerol sebacate)/poly(L-lactic acid) with tuneable structural and mechanical properties
    Xu, Bing
    Cook, Wayne D.
    Zhu, Chenghao
    Chen, Qizhi
    POLYMER INTERNATIONAL, 2016, 65 (04) : 423 - 429
  • [27] Poly(L-Lactic Acid)/Silicon Dioxide Nanocomposite Prepared Via the In Situ Melt Polycondensation of L-Lactic Acid in the Presence of Acidic Silica Sol: Isothermal Crystallization and Melting Behaviors
    Cao, Dan
    Wu, Linbo
    JOURNAL OF APPLIED POLYMER SCIENCE, 2009, 111 (02) : 1045 - 1050
  • [28] Enthalpy of melting of α′- and α-crystals of poly(L-lactic acid)
    Righetti, Maria Cristina
    Gazzano, Massimo
    Di Lorenzo, Maria Laura
    Androsch, Rene
    EUROPEAN POLYMER JOURNAL, 2015, 70 : 215 - 220
  • [29] Bionic structure and blood compatibility of highly oriented homo-epitaxially crystallized poly(L-lactic acid)
    Yang, Wenchao
    Wu, Ting
    Chen, Yueling
    Huang, Qingyi
    Ao, Jinqing
    Ming, Mei
    Gao, Xiaoyan
    Li, Zhengqiu
    Chen, Baoshu
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2023, 227 : 749 - 761
  • [30] Poly(L-lactic acid) Modified by Magnesium Phenylmalonate: Thermal Behavior, Processing Fluidity, and Mechanical Properties
    Tian, Liangliang
    Cai, Yanhua
    MATERIALS SCIENCE-MEDZIAGOTYRA, 2018, 24 (01): : 81 - 87