Overexpression of a Fragaria vesca NAM, ATAF, and CUC (NAC) Transcription Factor Gene (FvNAC29) Increases Salt and Cold Tolerance in Arabidopsis thaliana

被引:2
|
作者
Li, Wenhui [1 ]
Li, Huiwen [1 ]
Wei, Yangfan [1 ]
Han, Jiaxin [1 ]
Wang, Yu [2 ]
Li, Xingguo [1 ]
Zhang, Lihua [1 ]
Han, Deguo [1 ]
机构
[1] Northeast Agr Univ, Coll Hort & Landscape Architecture, Natl Local Joint Engn Res Ctr Dev & Utilizat Small, Minist Agr & Rural Affairs,Key Lab Biol & Genet Im, Harbin 150030, Peoples R China
[2] Heilongjiang Acad Agr Sci, Hort Branch, Harbin 150040, Peoples R China
基金
中国国家自然科学基金;
关键词
Fragaria vesca; FvNAC29; high-salinity stress; low-temperature stress; PRELIMINARY FUNCTIONAL-ANALYSIS; DROUGHT TOLERANCE; CITRATE SYNTHASE; STRESS TOLERANCE; ENHANCES SALT; EXPRESSION; SALINITY; ABA; DEHYDRATION; ACCLIMATION;
D O I
10.3390/ijms25074088
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The NAC (NAM, ATAF1/2, CUC2) family of transcription factors (TFs) is a vital transcription factor family of plants. It controls multiple parts of plant development, tissue formation, and abiotic stress response. We cloned the FvNAC29 gene from Fragaria vesca (a diploid strawberry) for this research. There is a conserved NAM structural domain in the FvNAC29 protein. The highest homology between FvNAC29 and PaNAC1 was found by phylogenetic tree analysis. Subcellular localization revealed that FvNAC29 is localized onto the nucleus. Compared to other tissues, the expression level of FvNAC29 was higher in young leaves and roots. In addition, Arabidopsis plants overexpressing FvNAC29 had higher cold and high-salinity tolerance than the wild type (WT) and unloaded line with empty vector (UL). The proline and chlorophyll contents of transgenic Arabidopsis plants, along with the activities of the antioxidant enzymes like catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD) under 200 mM NaCl treatment or -8 degrees C treatment, were higher than those activities of the control. Meanwhile, malondialdehyde (MDA) and the reactive oxygen species (ROS) content were higher in the WT and UL lines. FvNAC29 improves transgenic plant resistance to cold and salt stress by regulating the expression levels of AtRD29a, AtCCA1, AtP5CS1, and AtSnRK2.4. It also improves the potential to tolerate cold stress by positively regulating the expression levels of AtCBF1, AtCBF4, AtCOR15a, and AtCOR47. These findings suggest that FvNAC29 may be related to the processes and the molecular mechanisms of F. vesca response to high-salinity stress and LT stress, providing a comprehensive understanding of the NAC TFs.
引用
收藏
页数:19
相关论文
共 49 条
  • [41] Molecular Cloning and Characterization of MbMYB108, a Malus baccata MYB Transcription Factor Gene, with Functions in Tolerance to Cold and Drought Stress in Transgenic Arabidopsis thaliana
    Yao, Chunya
    Li, Wenhui
    Liang, Xiaoqi
    Ren, Chuankun
    Liu, Wanda
    Yang, Guohui
    Zhao, Mengfei
    Yang, Tianyu
    Li, Xingguo
    Han, Deguo
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (09)
  • [42] Overexpression of the Polygonum cuspidatum PcDREB2A Gene Encoding a DRE-Binding Transcription Factor Enhances the Drought Tolerance of Transgenic Arabidopsis thaliana
    Hongyan Hu
    Xiaowei Wang
    Zhijun Wu
    Mo Chen
    Tuanyao Chai
    Hong Wang
    Journal of Plant Biology, 2022, 65 : 505 - 515
  • [43] Overexpression of the Polygonum cuspidatum PcDREB2A Gene Encoding a DRE-Binding Transcription Factor Enhances the Drought Tolerance of Transgenic Arabidopsis thaliana
    Hu, Hongyan
    Wang, Xiaowei
    Wu, Zhijun
    Chen, Mo
    Chai, Tuanyao
    Wang, Hong
    JOURNAL OF PLANT BIOLOGY, 2022, 65 (06) : 505 - 515
  • [44] Overexpression of FTL1/DDF1, an AP2 transcription factor, enhances tolerance to cold, drought, and heat stresses in Arabidopsis thaliana
    Kang, Hong-Gyu
    Kim, Joonki
    Kim, Bohwa
    Jeong, Hana
    Choi, Sun Hee
    Kim, Eun Kyoung
    Lee, Hyo-Yeon
    Lim, Pyung Ok
    PLANT SCIENCE, 2011, 180 (04) : 634 - 641
  • [45] Overexpression of the Jatropha curcas JcERF1 gene coding an AP2/ERF-Type transcription factor increases tolerance to salt in transgenic tobacco
    Yang, Hua
    Yu, Chuan
    Yan, Jun
    Wang, Xuehua
    Chen, Fang
    Zhao, Yun
    Wei, Wei
    BIOCHEMISTRY-MOSCOW, 2014, 79 (11) : 1226 - 1236
  • [46] Overexpression of a tartary buckwheat R2R3-MYB transcription factor gene, FtMYB9, enhances tolerance to drought and salt stresses in transgenic Arabidopsis
    Gao, Fei
    Zhou, Jing
    Deng, Ren-Yu
    Zhao, Hai-Xia
    Li, Cheng-Lei
    Chen, Hui
    Suzuki, Tatsuro
    Park, Sang-Un
    Wu, Qi
    JOURNAL OF PLANT PHYSIOLOGY, 2017, 214 : 81 - 90
  • [47] Ectopic overexpression of maize heat shock transcription factor gene ZmHsf04 confers increased thermo and salt-stress tolerance in transgenic Arabidopsis
    Jiang, Yingli
    Zheng, Qianqian
    Chen, Long
    Liang, Yani
    Wu, Jiandong
    ACTA PHYSIOLOGIAE PLANTARUM, 2018, 40 (01)
  • [48] Overexpression of a Novel NAC Domain-Containing Transcription Factor Gene (AaNAC1) Enhances the Content of Artemisinin and Increases Tolerance to Drought and Botrytis cinerea in Artemisia annua
    Lv, Zongyou
    Wang, Shu
    Zhang, Fangyuan
    Chen, Lingxian
    Hao, Xiaolong
    Pan, Qifang
    Fu, Xueqing
    Li, Ling
    Sun, Xiaofen
    Tang, Kexuan
    PLANT AND CELL PHYSIOLOGY, 2016, 57 (09) : 1961 - 1971
  • [49] Overexpression of Grain Amaranth (Amaranthus hypochondriacus) AhERF or AhDOF Transcription Factors in Arabidopsis thaliana Increases Water Deficit- and Salt-Stress Tolerance, Respectively, via Contrasting Stress-Amelioration Mechanisms
    Massange-Sanchez, Julio A.
    Palmeros-Suarez, Paola A.
    Espitia-Rangel, Eduardo
    Rodriguez-Arevalo, Isaac
    Sanchez-Segura, Lino
    Martinez-Gallardo, Norma A.
    Alatorre-Cobos, Fulgencio
    Tiessen, Axel
    Delano-Frier, John P.
    PLOS ONE, 2016, 11 (10):