Overexpression of a Fragaria vesca NAM, ATAF, and CUC (NAC) Transcription Factor Gene (FvNAC29) Increases Salt and Cold Tolerance in Arabidopsis thaliana

被引:2
|
作者
Li, Wenhui [1 ]
Li, Huiwen [1 ]
Wei, Yangfan [1 ]
Han, Jiaxin [1 ]
Wang, Yu [2 ]
Li, Xingguo [1 ]
Zhang, Lihua [1 ]
Han, Deguo [1 ]
机构
[1] Northeast Agr Univ, Coll Hort & Landscape Architecture, Natl Local Joint Engn Res Ctr Dev & Utilizat Small, Minist Agr & Rural Affairs,Key Lab Biol & Genet Im, Harbin 150030, Peoples R China
[2] Heilongjiang Acad Agr Sci, Hort Branch, Harbin 150040, Peoples R China
基金
中国国家自然科学基金;
关键词
Fragaria vesca; FvNAC29; high-salinity stress; low-temperature stress; PRELIMINARY FUNCTIONAL-ANALYSIS; DROUGHT TOLERANCE; CITRATE SYNTHASE; STRESS TOLERANCE; ENHANCES SALT; EXPRESSION; SALINITY; ABA; DEHYDRATION; ACCLIMATION;
D O I
10.3390/ijms25074088
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The NAC (NAM, ATAF1/2, CUC2) family of transcription factors (TFs) is a vital transcription factor family of plants. It controls multiple parts of plant development, tissue formation, and abiotic stress response. We cloned the FvNAC29 gene from Fragaria vesca (a diploid strawberry) for this research. There is a conserved NAM structural domain in the FvNAC29 protein. The highest homology between FvNAC29 and PaNAC1 was found by phylogenetic tree analysis. Subcellular localization revealed that FvNAC29 is localized onto the nucleus. Compared to other tissues, the expression level of FvNAC29 was higher in young leaves and roots. In addition, Arabidopsis plants overexpressing FvNAC29 had higher cold and high-salinity tolerance than the wild type (WT) and unloaded line with empty vector (UL). The proline and chlorophyll contents of transgenic Arabidopsis plants, along with the activities of the antioxidant enzymes like catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD) under 200 mM NaCl treatment or -8 degrees C treatment, were higher than those activities of the control. Meanwhile, malondialdehyde (MDA) and the reactive oxygen species (ROS) content were higher in the WT and UL lines. FvNAC29 improves transgenic plant resistance to cold and salt stress by regulating the expression levels of AtRD29a, AtCCA1, AtP5CS1, and AtSnRK2.4. It also improves the potential to tolerate cold stress by positively regulating the expression levels of AtCBF1, AtCBF4, AtCOR15a, and AtCOR47. These findings suggest that FvNAC29 may be related to the processes and the molecular mechanisms of F. vesca response to high-salinity stress and LT stress, providing a comprehensive understanding of the NAC TFs.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] A novel NAC transcription factor from Suaeda liaotungensis K. enhanced transgenic Arabidopsis drought, salt, and cold stress tolerance
    Xiao-lan Li
    Xing Yang
    Yu-xin Hu
    Xiao-dong Yu
    Qiu-li Li
    Plant Cell Reports, 2014, 33 : 767 - 778
  • [42] Overexpression of durum wheat NAC transcription factor TtNTL3A promotes early flowering and increases multiple stress tolerance in transgenic Arabidopsis
    Saidi, Mohamed Najib
    Mergby, Dhawya
    Souibgui, Amel
    Yacoubi, Ines
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2022, 192 : 1 - 9
  • [43] Overexpression of transcription factor FaMYB63 enhances salt tolerance by directly binding to the SOS1 promoter in Arabidopsis thaliana
    Shuaishuai Wang
    Rongyi Jiang
    Jian Feng
    Haodong Zou
    Xiaohuan Han
    Xingbin Xie
    Guanghui Zheng
    Congbing Fang
    Jing Zhao
    Plant Molecular Biology, 2024, 114
  • [44] Overexpression of transcription factor FaMYB63 enhances salt tolerance by directly binding to the SOS1 promoter in Arabidopsis thaliana
    Wang, Shuaishuai
    Jiang, Rongyi
    Feng, Jian
    Zou, Haodong
    Han, Xiaohuan
    Xie, Xingbin
    Zheng, Guanghui
    Fang, Congbing
    Zhao, Jing
    PLANT MOLECULAR BIOLOGY, 2024, 114 (02)
  • [45] Overexpression of the Na+/H+ antiporter gene from Suaeda salsa confers cold and salt tolerance to transgenic Arabidopsis thaliana
    Jinyao Li
    Gangqiang Jiang
    Ping Huang
    Ji Ma
    Fuchun Zhang
    Plant Cell, Tissue and Organ Culture, 2007, 90
  • [46] Overexpression of the Na+/H+ antiporter gene from Suaeda salsa confers cold and salt tolerance to transgenic Arabidopsis thaliana
    Li, Jinyao
    Jiang, Gangqiang
    Huang, Ping
    Ma, Ji
    Zhang, Fuchun
    PLANT CELL TISSUE AND ORGAN CULTURE, 2007, 90 (01) : 41 - 48
  • [47] Isolation and Functional Analysis of VvWRKY28, a Vitis vinifera WRKY Transcription Factor Gene, with Functions in Tolerance to Cold and Salt Stress in Transgenic Arabidopsis thaliana
    Liu, Wei
    Liang, Xiaoqi
    Cai, Weijia
    Wang, Hao
    Liu, Xu
    Cheng, Longfei
    Song, Penghui
    Luo, Guijie
    Han, Deguo
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (21)
  • [48] Transcriptome Analysis of Poplar Under Salt Stress and Over- Expression of Transcription Factor NAC57 Gene Confers Salt Tolerance in Transgenic Arabidopsis
    Yao, Wenjing
    Zhao, Kai
    Cheng, Zihan
    Li, Xiyan
    Zhou, Boru
    Jiang, Tingbo
    FRONTIERS IN PLANT SCIENCE, 2018, 9
  • [49] Overexpression of Arabidopsis thaliana LTL1, a salt-induced gene encoding a GDSL-motif lipase, increases salt tolerance in yeast and transgenic plants
    Naranjo, Miguel Angel
    Forment, Javier
    Roldan, Marta
    Serrano, Ramon
    Vicente, Oscar
    PLANT CELL AND ENVIRONMENT, 2006, 29 (10): : 1890 - 1900
  • [50] Overexpression of a Malus baccata WRKY transcription factor gene (MbWRKY5) increases drought and salt tolerance in transgenic tobacco
    Han, Deguo
    Hou, Yanjie
    Wang, Yufang
    Ni, Boxin
    Li, Zitong
    Yang, Guohui
    CANADIAN JOURNAL OF PLANT SCIENCE, 2019, 99 (02) : 173 - 183