Current Applications of Artificial Intelligence for Pediatric Dentistry: A Systematic Review and Meta-Analysis

被引:0
|
作者
Rokhshad, Rata [1 ]
Zhang, Ping [2 ]
Mohammad-Rahimi, Hossein [1 ]
Shobeiri, Parnian [3 ]
Schwendicke, Falk [1 ,4 ]
机构
[1] ITU WHO Focus Grp Hlth, Top Grp Dent Diagnost & Digital Dent, Berlin, Germany
[2] Univ Alabama Birmingham, Dept Pediat Dent, ,Ala, Birmingham, AL USA
[3] Univ Tehran Med Sci, Sch Med, Tehran, Iran
[4] Ludwig Maximilians Univ Munchen, Conservat Dent & Periodontol, Munich, Germany
关键词
AGE ESTIMATION; ARTIFICIAL INTELLIGENCE; CARIES DETECTION; DEEP LEARNING; PEDIATRIC DENTISTRY; CHILDHOOD; CLASSIFICATION;
D O I
暂无
中图分类号
R78 [口腔科学];
学科分类号
1003 ;
摘要
Purpose: To systematically evaluate artificial intelligence applications for diagnostic and treatment planning possibilities in pediatric queries. The Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) checklist was used to assess the risk of bias assessment of the included studies. Results: Based on the initial screening, 33 eligible studies were included (among 3,542). Eleven studies appeared to have low bias risk across all QUADAS-2 domains. Most applications focused on early childhood caries diagnosis and prediction, tooth identification, oral health evaluation, and supernumerary tooth identification. Six studies evaluated AI tools for mesiodens or supernumerary tooth identification on radigraphs, four for primary tooth identification and/or numbering, seven studies to detect caries on radiographs, and 12 to predict early childhood caries. For these four tasks, the reported accuracy of AI varied from 60 percent to 99 percent, sensitivity was from 20 percent to 100 percent, specificity was from 49 percent to 100 percent, F1-score was from 60 percent to 97 percent, and the area-under-the-curve varied from 87 percent to 100 percent. Conclusions: The overall body of evidence regarding artificial intelligence applications in pediatric dentistry does not allow for firm conclusions. For a wide range of applications, AI shows promising accuracy. Future studies should focus on a comparison of AI against the standard of care and employ a set of standardized outcomes and metrics to allow comparison across studies.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Wearable Artificial Intelligence for Detecting Anxiety: Systematic Review and Meta-Analysis
    Abd-alrazaq, Alaa
    Alsaad, Rawan
    Harfouche, Manale
    Aziz, Sarah
    Ahmed, Arfan
    Damseh, Rafat
    Sheikh, Javaid
    JOURNAL OF MEDICAL INTERNET RESEARCH, 2023, 25
  • [22] Systematic review with meta-analysis: artificial intelligence in the diagnosis of oesophageal diseases
    Visaggi, Pierfrancesco
    Barberio, Brigida
    Gregori, Dario
    Azzolina, Danila
    Martinato, Matteo
    Hassan, Cesare
    Sharma, Prateek
    Savarino, Edoardo
    Bortoli, Nicola
    ALIMENTARY PHARMACOLOGY & THERAPEUTICS, 2022, 55 (05) : 528 - 540
  • [23] Accuracy of artificial intelligence in caries detection: a systematic review and meta-analysis
    Luke, Alexander Maniangat
    Rezallah, Nader Nabil Fouad
    HEAD & FACE MEDICINE, 2025, 21 (01)
  • [24] Artificial Intelligence for Detecting Cephalometric Landmarks: A Systematic Review and Meta-analysis
    Germana de Queiroz Tavares Borges Mesquita
    Walbert A. Vieira
    Maria Tereza Campos Vidigal
    Bruno Augusto Nassif Travençolo
    Thiago Leite Beaini
    Rubens Spin-Neto
    Luiz Renato Paranhos
    Rui Barbosa de Brito Júnior
    Journal of Digital Imaging, 2023, 36 : 1158 - 1179
  • [25] ARTIFICIAL INTELLIGENCE IN THE DIAGNOSIS OF ESOPHAGEAL DISEASES: A SYSTEMATIC REVIEW WITH META-ANALYSIS
    Visaggi, Pierfrancesco
    Barberio, Brigida
    Gregori, Dario
    Azzolina, Danila
    Martinato, Matteo
    Hassan, Cesare
    Sharma, Prateek
    Savarino, Edoardo
    De Bortoli, Nicola
    GASTROENTEROLOGY, 2022, 162 (07) : S840 - S840
  • [26] Artificial intelligence as diagnostic modality for keratoconus: A systematic review and meta-analysis
    Afifah, Azzahra
    Syafira, Fara
    Afladhanti, Putri Mahirah
    Dharmawidiarini, Dini
    JOURNAL OF TAIBAH UNIVERSITY MEDICAL SCIENCES, 2024, 19 (02): : 296 - 303
  • [27] Reporting guidelines in medical artificial intelligence: a systematic review and meta-analysis
    Kolbinger, Fiona R.
    Veldhuizen, Gregory P.
    Zhu, Jiefu
    Truhn, Daniel
    Kather, Jakob Nikolas
    COMMUNICATIONS MEDICINE, 2024, 4 (01):
  • [28] Artificial Intelligence for Mohs and Dermatologic Surgery: A Systematic Review and Meta-Analysis
    Mirza, Fatima N.
    Haq, Zaim
    Abdi, Parsa
    Diaz, Michael J.
    Libby, Tiffany J.
    DERMATOLOGIC SURGERY, 2024, 50 (09) : 799 - 806
  • [29] Commentary on "Artificial Intelligence in Dermatology: A Systematic Review of Its Applications in Melanoma and Keratinocyte Carcinoma Diagnosis" and "Artificial Intelligence for Mohs and Dermatologic Surgery: A Systematic Review and Meta-Analysis"
    Vidal, Nahid Y.
    DERMATOLOGIC SURGERY, 2024, 50 (09) : 807 - 808
  • [30] Applications of artificial intelligence in dentistry: A comprehensive review
    Carrillo-Perez, Francisco
    Pecho, Oscar E.
    Carlos Morales, Juan
    Paravina, Rade D.
    Della Bona, Alvaro
    Ghinea, Razvan
    Pulgar, Rosa
    del Mar Perez, Maria
    Javier Herrera, Luis
    JOURNAL OF ESTHETIC AND RESTORATIVE DENTISTRY, 2022, 34 (01) : 259 - 280