Efficient arsenic removal from water using iron-impregnated low-temperature biochar derived from henequen fibers: performance, mechanism, and LCA analysis

被引:1
|
作者
Liao, Xu [1 ]
Miranda Aviles, Raul [2 ,3 ]
Serafin Munoz, Alma Hortensia [4 ]
Rocha Amador, Diana Olivia [5 ]
Perez Rodriguez, Rebeca Yasmin [6 ]
Hernandez Anguiano, Jesus Horacio [7 ]
Julia Navarro, Carmen [8 ]
Zha, Xiaoxiao [1 ]
Moncada, Daniela [3 ]
Puy Alquiza, Maria de Jesus [2 ]
Kshirsagar, Pooja Vinod [2 ]
Li, Yanmei [2 ]
机构
[1] Univ Guanajuato, Div Engn, Doctoral Program Water Sci & Technol, Guanajuato 36000, Guanajuato, Mexico
[2] Univ Guanajuato, Dept Min Met & Geol Engn, Guanajuato 36020, Guanajuato, Mexico
[3] Univ Guanajuato, Lab Res & Characterizat Minerals & Mat, Guanajuato 36020, Guanajuato, Mexico
[4] Univ Guanajuato, Dept Civil Engn, Guanajuato 36000, Guanajuato, Mexico
[5] Univ Guanajuato, Dept Pharm, Guanajuato 36000, Guanajuato, Mexico
[6] Univ Guanajuato, Dept Chem, Guanajuato 36000, Guanajuato, Mexico
[7] Univ Guanajuato, Dept Geomat & Hydraul Engn, Guanajuato 36000, Guanajuato, Mexico
[8] Univ Autonomous Chihuahua, Fac Engn, Chihuahua 31000, Chihuahua, Mexico
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
关键词
Arsenic adsorption; CO2; emission; Regeneration; Torrefaction biochar; Water treatment; AQUEOUS-SOLUTIONS; ADSORPTION; OXIDE; CARBON; COLUMN; COMPOSITE; PB(II);
D O I
10.1038/s41598-024-69769-7
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The present study aims to investigate the low-energy consumption and high-efficiency removal of arsenic from aqueous solutions. The designed adsorbent Fe/TBC was synthesized by impregnating iron on torrefaction henequen fibers. Isothermal adsorption experiments indicated maximum adsorption capacities of 7.30 mg/g and 8.98 mg/g for arsenic(V) at 25.0 degrees C and 40.0 degrees C, respectively. The interference testing showed that elevated levels of pH, HCO3- concentration, and humic acid content in the solution could inhibit the adsorption of arsenic by Fe/TBC. Characterization of the adsorbent before and after adsorption using FTIR and SEM-EDS techniques confirmed arsenic adsorption mechanisms, including pore filling, electrostatic interaction, surface complexation, and H-bond adhesion. Column experiments were conducted to treat arsenic-spiked water and natural groundwater, with effective treatment volumes of 550 mL and 8792 mL, respectively. Lastly, the life cycle assessment (LCA) using OpenLCA 2.0.3 software was performed to treat 1 m(3) of natural groundwater as the functional unit. The results indicated relatively significant environmental impacts during the Fe/TBC synthesis stage. The global warming potential resulting from the entire life cycle process was determined to be 0.8 kg CO2-eq. The results from batch and column experiments, regeneration studies, and LCA analysis indicate that Fe/TBC could be a promising adsorbent for arsenic(V).
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Efficient Removal of Paraquat Pollutants Using Magnetic Biochar Derived from Corn Husk Waste: A Sustainable Approach for Water Remediation
    Damdib, Sakonsupa
    Siyasukh, Adisak
    Vanichsetakul, Bhawaranchat
    Phamornpiboon, Phamornsiri
    Thanachayanont, Chanchana
    Punyapalakul, Patiparn
    Tonanon, Nattaporn
    ADSORPTION SCIENCE & TECHNOLOGY, 2023, 2023
  • [22] Removal Performance and Mechanism of Emerging Pollutant Chloroquine Phosphate from Water by Iron and Magnesium Co-Modified Rape Straw Biochar
    Sun, Hongwei
    He, Jinjin
    Liu, Yucan
    Ji, Xianguo
    Wang, Gang
    Yang, Xiaoyong
    Zhang, Yanxiang
    MOLECULES, 2023, 28 (08):
  • [23] Preparation of chitosan-iron oxide modified sludge-based biochar for effective removal of tetracycline from water: performance and mechanism
    Yang, Yangyang
    Li, Shihao
    Zhu, Zhenting
    Wan, Lei
    Wang, Xun
    Hou, Jun
    Liu, Songqi
    Fan, Xiulei
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2023, 30 (60) : 124829 - 124831
  • [24] Efficient removal of arsenic from water using a granular adsorbent: Fe-Mn binary oxide impregnated chitosan bead
    Qi, Jianying
    Zhang, Gaosheng
    Li, Haining
    BIORESOURCE TECHNOLOGY, 2015, 193 : 243 - 249
  • [25] Efficient Removal of Fluoride Using Polypyrrole-Modified Biochar Derived from Slow Pyrolysis of Pomelo Peel: Sorption Capacity and Mechanism
    Wang, Jianguo
    Chen, Nan
    Li, Miao
    Feng, Chuanping
    JOURNAL OF POLYMERS AND THE ENVIRONMENT, 2018, 26 (04) : 1559 - 1572
  • [26] Arsenic and selenium removal from water using biosynthesized nanoscale zero-valent iron: A factorial design analysis
    Adio, Salawu Omobayo
    Omar, Mohamed Hussein
    Asif, Mohammad
    Saleh, Tawfik A.
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2017, 107 : 518 - 527
  • [27] Removal of copper ions from aqueous solution using low temperature biochar derived from the pyrolysis of municipal solid waste
    Hoslett, John
    Ghazal, Heba
    Ahmad, Darem
    Jouhara, Hussam
    SCIENCE OF THE TOTAL ENVIRONMENT, 2019, 673 : 777 - 789
  • [28] Study on adsorption performance and mechanism of peanut hull-derived magnetic biochar for removal of malachite green from water
    Zhao, Xiaohui
    Hua, Qiong
    Wang, Chengyu
    Wang, Xiaodan
    Zhang, Hongpei
    Zhang, Ke
    Zheng, Binguo
    Yang, Jinwen
    Niu, Junling
    MATERIALS RESEARCH EXPRESS, 2023, 10 (09)
  • [29] First investigations on removal of nitrazepam from water using biochar derived from macroalgae low-cost adsorbent: kinetics, isotherms and thermodynamics studies
    Nazal, Mazen K.
    Rao, Durga
    Abuzaid, Nabeel
    WATER PRACTICE AND TECHNOLOGY, 2021, 16 (03) : 946 - 960
  • [30] Efficient removal of Tris(2-chloroethyl) phosphate by biochar derived from shrimp shell: Adsorption performance and mechanism study
    Yang, Chenyu
    Liu, Chang
    Yan, Yile
    Lu, Lun
    Ma, Ruixue
    Xiao, Xian
    Yu, Yang
    Zhao, Yuan
    Yu, Yunjiang
    Li, Liangzhong
    ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY, 2023, 254