Meromorphic functions;
Convex functions;
Concave functions;
Growth and distortion theorems;
Radius of univalence;
Radius of convexity;
Radius of concavity;
CONVEX;
D O I:
10.1007/s40315-024-00525-8
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
Let S(p) be the class of all meromorphic univalent functions defined in the unit disc D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb D}$$\end{document} of the complex plane with a simple pole at z=p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$z=p$$\end{document} and normalized by the conditions f(0)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(0)=0$$\end{document} and f '(0)=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f'(0)=1$$\end{document}. In this article, we establish an estimate of the quantity |zf '/f|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|zf'/f|$$\end{document} and obtain the region of variability of the function zf ''/f '\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$zf''/f'$$\end{document} for z is an element of D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$z\in {\mathbb D}$$\end{document}, f is an element of S(p)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\in S(p)$$\end{document}. After that, we define radius of concavity and compute the same for functions in S(p) and for some other well-known classes of functions. We also explore linear combinations of functions belonging to S(p) and some other classes of analytic univalent functions and investigate their radii of univalence, convexity and concavity.
机构:
Univ Victoria, Dept Math & Stat, Victoria, BC V8W 3R4, Canada
China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 40402, TaiwanUniv Victoria, Dept Math & Stat, Victoria, BC V8W 3R4, Canada
Srivastava, H. M.
Sharma, Poonam
论文数: 0引用数: 0
h-index: 0
机构:
Univ Lucknow, Dept Math & Astron, Lucknow 226007, Uttar Pradesh, IndiaUniv Victoria, Dept Math & Stat, Victoria, BC V8W 3R4, Canada
Sharma, Poonam
Raina, R. K.
论文数: 0引用数: 0
h-index: 0
机构:
MP Univ Agr & Technol, Udaipur 313001, Rajasthan, India
10-11 Ganpati Vihar,Opposite Sect 5, Udaipur 313002, Rajasthan, IndiaUniv Victoria, Dept Math & Stat, Victoria, BC V8W 3R4, Canada