Distortion, Radius of Concavity and Several Other Radii Results for Certain Classes of Functions

被引:0
|
作者
Bhowmik, Bappaditya [1 ]
Biswas, Souvik [1 ]
机构
[1] Indian Inst Technol Kharagpur, Dept Math, Kharagpur 721302, India
关键词
Meromorphic functions; Convex functions; Concave functions; Growth and distortion theorems; Radius of univalence; Radius of convexity; Radius of concavity; CONVEX;
D O I
10.1007/s40315-024-00525-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let S(p) be the class of all meromorphic univalent functions defined in the unit disc D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb D}$$\end{document} of the complex plane with a simple pole at z=p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$z=p$$\end{document} and normalized by the conditions f(0)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(0)=0$$\end{document} and f '(0)=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f'(0)=1$$\end{document}. In this article, we establish an estimate of the quantity |zf '/f|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|zf'/f|$$\end{document} and obtain the region of variability of the function zf ''/f '\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$zf''/f'$$\end{document} for z is an element of D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$z\in {\mathbb D}$$\end{document}, f is an element of S(p)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\in S(p)$$\end{document}. After that, we define radius of concavity and compute the same for functions in S(p) and for some other well-known classes of functions. We also explore linear combinations of functions belonging to S(p) and some other classes of analytic univalent functions and investigate their radii of univalence, convexity and concavity.
引用
收藏
页码:393 / 418
页数:26
相关论文
共 4 条
  • [1] Radius of convexity of certain classes of analytic functions
    Sokol, Janusz
    Szynal, Anetta
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 344 (02) : 869 - 875
  • [2] Bohr radius for certain classes of starlike and convex univalent functions
    Allu, Vasudevarao
    Halder, Himadri
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 493 (01)
  • [3] ON SUBORDINATION RESULTS FOR CERTAIN NEW CLASSES OF ANALYTIC FUNCTIONS DEFINED BY USING SALAGEAN OPERATOR
    Aouf, M. K.
    El-Ashwah, R. M.
    Hassan, A. A. M.
    Hassan, A. H.
    BULLETIN OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 4 (01): : 239 - 246
  • [4] Inclusion results for certain classes of analytic functions associated with a new fractional differintegral operator
    Srivastava, H. M.
    Sharma, Poonam
    Raina, R. K.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2018, 112 (01) : 271 - 292