TIANA: transcription factors cooperativity inference analysis with neural attention

被引:0
作者
Li, Rick Z. [1 ]
Han, Claudia Z. [1 ]
Glass, Christopher K. [1 ]
机构
[1] Univ Calif San Diego, Dept Cellular & Mol Med, La Jolla, CA 92093 USA
来源
BMC BIOINFORMATICS | 2024年 / 25卷 / 01期
基金
美国国家卫生研究院;
关键词
Self-attention; Transcription Factors; Deep Learning; Integrated gradients; Bioinformatics; FACTOR-BINDING; MACROPHAGE; OCT4;
D O I
10.1186/s12859-024-05852-0
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: Growing evidence suggests that distal regulatory elements are essential for cellular function and states. The sequences within these distal elements, especially motifs for transcription factor binding, provide critical information about the underlying regulatory programs. However, cooperativities between transcription factors that recognize these motifs are nonlinear and multiplexed, rendering traditional modeling methods insufficient to capture the underlying mechanisms. Recent development of attention mechanism, which exhibit superior performance in capturing dependencies across input sequences, makes them well-suited to uncover and decipher intricate dependencies between regulatory elements. Result: We present Transcription factors cooperativity Inference Analysis with Neural Attention (TIANA), a deep learning framework that focuses on interpretability. In this study, we demonstrated that TIANA could discover biologically relevant insights into co-occurring pairs of transcription factor motifs. Compared with existing tools, TIANA showed superior interpretability and robust performance in identifying putative transcription factor cooperativities from co-occurring motifs. Conclusion: Our results suggest that TIANA can be an effective tool to decipher transcription factor cooperativities from distal sequence data. TIANA can be accessed through: https://github.com/rzzli/TIANA.
引用
收藏
页数:15
相关论文
共 39 条
  • [1] Oct4 switches partnering from Sox2 to Sox17 to reinterpret the enhancer code and specify endoderm
    Aksoy, Irene
    Jauch, Ralf
    Chen, Jiaxuan
    Dyla, Mateusz
    Divakar, Ushashree
    Bogu, Gireesh K.
    Teo, Roy
    Ng, Calista Keow Leng
    Herath, Wishva
    Sun Lili
    Hutchins, Andrew P.
    Robson, Paul
    Kolatkar, Prasanna R.
    Stanton, Lawrence W.
    [J]. EMBO JOURNAL, 2013, 32 (07) : 938 - 953
  • [2] The molecular hallmarks of epigenetic control
    Allis, C. David
    Jenuwein, Thomas
    [J]. NATURE REVIEWS GENETICS, 2016, 17 (08) : 487 - 500
  • [3] Effective gene expression prediction from sequence by integrating long-range interactions
    Avsec, Ziga
    Agarwal, Vikram
    Visentin, Daniel
    Ledsam, Joseph R.
    Grabska-Barwinska, Agnieszka
    Taylor, Kyle R.
    Assael, Yannis
    Jumper, John
    Kohli, Pushmeet
    Kelley, David R.
    [J]. NATURE METHODS, 2021, 18 (10) : 1196 - +
  • [4] The MEME Suite
    Bailey, Timothy L.
    Johnson, James
    Grant, Charles E.
    Noble, William S.
    [J]. NUCLEIC ACIDS RESEARCH, 2015, 43 (W1) : W39 - W49
  • [5] Coregulation of Transcription Factor Binding and Nucleosome Occupancy through DNA Features of Mammalian Enhancers
    Barozzi, Iros
    Simonatto, Marta
    Bonifacio, Silvia
    Yang, Lin
    Rohs, Remo
    Ghisletti, Serena
    Natoli, Gioacchino
    [J]. MOLECULAR CELL, 2014, 54 (05) : 844 - 857
  • [6] Considering Abundance, Affinity, and Binding Site Availability in the NF-κB Target Selection Puzzle
    Brignall, Ruth
    Moody, Amy T.
    Mathew, Shibin
    Gaudet, Suzanne
    [J]. FRONTIERS IN IMMUNOLOGY, 2019, 10
  • [7] Quantitative profiling of selective Sox/POU pairing on hundreds of sequences in parallel by Coop-seq
    Chang, Yiming K.
    Srivastava, Yogesh
    Hu, Caizhen
    Joyce, Adam
    Yang, Xiaoxiao
    Zuo, Zheng
    Havranek, James J.
    Stormo, Gary D.
    Jauch, Ralf
    [J]. NUCLEIC ACIDS RESEARCH, 2017, 45 (02) : 832 - 845
  • [8] The Specificity of Innate Immune Responses Is Enforced by Repression of Interferon Response Elements by NF-κB p50
    Cheng, Christine S.
    Feldman, Kristyn E.
    Lee, James
    Verma, Shilpi
    Huang, De-Bin
    Huynh, Kim
    Chang, Mikyoung
    Ponomarenko, Julia V.
    Sun, Shao-Cong
    Benedict, Chris A.
    Ghosh, Gourisankar
    Hoffmann, Alexander
    [J]. SCIENCE SIGNALING, 2011, 4 (161)
  • [9] Convolutional neural networks
    Derry, Alexander
    Krzywinski, Martin
    Altman, Naomi
    [J]. NATURE METHODS, 2023, 20 (09) : 1269 - 1270
  • [10] Diverse motif ensembles specify non-redundant DNA binding activities of AP-1 family members in macrophages
    Fonseca, Gregory J.
    Tao, Jenhan
    Westin, Emma M.
    Duttke, Sascha H.
    Spann, Nathanael J.
    Strid, Tobias
    Shen, Zeyang
    Stender, Joshua D.
    Sakai, Mashito
    Link, Verena M.
    Benner, Christopher
    Glass, Christopher K.
    [J]. NATURE COMMUNICATIONS, 2019, 10 (1)