Ensemble learning for fetal ultrasound and maternal-fetal data to predict mode of delivery after labor induction

被引:3
作者
Ferreira, Iolanda Joao Mora Cruz Freitas [1 ,2 ]
Simoes, Joana Maria Silva [3 ]
Pereira, Beatriz [4 ]
Correia, Joao Nuno Goncalves Costa Cavaleiro [3 ]
Areia, Ana Luisa Fialho de Amaral [1 ]
机构
[1] Univ Coimbra, Univ & Hosp Ctr Coimbra, Fac Med, Obstet Dept, Coimbra, Portugal
[2] Maternidade Doutor Daniel Matos, R Miguel Torga, P-3030165 Coimbra, Portugal
[3] Univ Coimbra, Ctr Informat & Syst, Dept Informat Engn, Coimbra, Portugal
[4] Univ Coimbra, Dept Phys, Coimbra, Portugal
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
关键词
VAGINAL DELIVERY; CESAREAN-SECTION; BIRTH-WEIGHT; WOMEN; SEGMENTATION; ASSOCIATION; PARAMETERS; IMAGE; RISK; HEAD;
D O I
10.1038/s41598-024-65394-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Providing adequate counseling on mode of delivery after induction of labor (IOL) is of utmost importance. Various AI algorithms have been developed for this purpose, but rely on maternal-fetal data, not including ultrasound (US) imaging. We used retrospectively collected clinical data from 808 subjects submitted to IOL, totaling 2024 US images, to train AI models to predict vaginal delivery (VD) and cesarean section (CS) outcomes after IOL. The best overall model used only clinical data (F1-score: 0.736; positive predictive value (PPV): 0.734). The imaging models employed fetal head, abdomen and femur US images, showing limited discriminative results. The best model used femur images (F1-score: 0.594; PPV: 0.580). Consequently, we constructed ensemble models to test whether US imaging could enhance the clinical data model. The best ensemble model included clinical data and US femur images (F1-score: 0.689; PPV: 0.693), presenting a false positive and false negative interesting trade-off. The model accurately predicted CS on 4 additional cases, despite misclassifying 20 additional VD, resulting in a 6.0% decrease in average accuracy compared to the clinical data model. Hence, integrating US imaging into the latter model can be a new development in assisting mode of delivery counseling.
引用
收藏
页数:13
相关论文
共 63 条
[51]   Fetal biometry and amniotic fluid volume assessment end-to-end automation using Deep Learning [J].
Slimani, Saad ;
Hounka, Salaheddine ;
Mahmoudi, Abdelhak ;
Rehah, Taha ;
Laoudiyi, Dalal ;
Saadi, Hanane ;
Bouziyane, Amal ;
Lamrissi, Amine ;
Jalal, Mohamed ;
Bouhya, Said ;
Akiki, Mustapha ;
Bouyakhf, Youssef ;
Badaoui, Bouabid ;
Radgui, Amina ;
Mhlanga, Musa ;
Bouyakhf, El Houssine .
NATURE COMMUNICATIONS, 2023, 14 (01)
[52]   The Classification and Segmentation of Fetal Anatomies Ultrasound Image: A Survey [J].
Song, Chunlin ;
Gao, Tao ;
Wang, Hong ;
Sudirman, Sud ;
Zhang, Wei ;
Zhu, Haogang .
JOURNAL OF MEDICAL IMAGING AND HEALTH INFORMATICS, 2021, 11 (03) :789-802
[53]   Blinded ultrasound fetal biometry at 36 weeks and risk of emergency Cesarean delivery in a prospective cohort study of low-risk nulliparous women [J].
Sovio, U. ;
Smith, G. C. S. .
ULTRASOUND IN OBSTETRICS & GYNECOLOGY, 2018, 52 (01) :78-86
[54]   Ultrasound Fetal Image Segmentation Techniques: A Review [J].
Sree, S. Jayanthi ;
Vasanthanayaki, C. .
CURRENT MEDICAL IMAGING REVIEWS, 2019, 15 (01) :52-60
[55]   Rethinking the Inception Architecture for Computer Vision [J].
Szegedy, Christian ;
Vanhoucke, Vincent ;
Ioffe, Sergey ;
Shlens, Jon ;
Wojna, Zbigniew .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :2818-2826
[56]   Validating machine learning models for the prediction of labour induction intervention using routine data: a registry-based retrospective cohort study at a tertiary hospital in northern Tanzania [J].
Tarimo, Clifford Silver ;
Bhuyan, Soumitra S. ;
Li, Quanman ;
Mahande, Michael Johnson J. ;
Wu, Jian ;
Fu, Xiaoli .
BMJ OPEN, 2021, 11 (12)
[57]   Development of an artificial intelligence-based assessment model for prediction of embryo viability using static images captured by optical light microscopy during IVF [J].
VerMilyea, M. ;
Hall, J. M. M. ;
Diakiw, S. M. ;
Johnston, A. ;
Nguyen, T. ;
Perugini, D. ;
Miller, A. ;
Picou, A. ;
Murphy, A. P. ;
Perugini, M. .
HUMAN REPRODUCTION, 2020, 35 (04) :770-784
[58]  
Vicente L. F., 2013, Norma n 023/2011 de 29/09/2011
[59]   Development and validation of a composite AI model for the diagnosis of levator ani muscle avulsion [J].
Wu, Shuangyu ;
Ren, Yong ;
Lin, Xin ;
Huang, Zeping ;
Zheng, Zhijuan ;
Zhang, Xinling .
EUROPEAN RADIOLOGY, 2022, 32 (09) :5898-5906
[60]   Using deep-learning algorithms to classify fetal brain ultrasound images as normal or abnormal [J].
Xie, H. N. ;
Wang, N. ;
He, M. ;
Zhang, L. H. ;
Cai, H. M. ;
Xian, J. B. ;
Lin, M. F. ;
Zheng, J. ;
Yang, Y. Z. .
ULTRASOUND IN OBSTETRICS & GYNECOLOGY, 2020, 56 (04) :579-587