Ensemble learning for fetal ultrasound and maternal-fetal data to predict mode of delivery after labor induction

被引:3
作者
Ferreira, Iolanda Joao Mora Cruz Freitas [1 ,2 ]
Simoes, Joana Maria Silva [3 ]
Pereira, Beatriz [4 ]
Correia, Joao Nuno Goncalves Costa Cavaleiro [3 ]
Areia, Ana Luisa Fialho de Amaral [1 ]
机构
[1] Univ Coimbra, Univ & Hosp Ctr Coimbra, Fac Med, Obstet Dept, Coimbra, Portugal
[2] Maternidade Doutor Daniel Matos, R Miguel Torga, P-3030165 Coimbra, Portugal
[3] Univ Coimbra, Ctr Informat & Syst, Dept Informat Engn, Coimbra, Portugal
[4] Univ Coimbra, Dept Phys, Coimbra, Portugal
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
关键词
VAGINAL DELIVERY; CESAREAN-SECTION; BIRTH-WEIGHT; WOMEN; SEGMENTATION; ASSOCIATION; PARAMETERS; IMAGE; RISK; HEAD;
D O I
10.1038/s41598-024-65394-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Providing adequate counseling on mode of delivery after induction of labor (IOL) is of utmost importance. Various AI algorithms have been developed for this purpose, but rely on maternal-fetal data, not including ultrasound (US) imaging. We used retrospectively collected clinical data from 808 subjects submitted to IOL, totaling 2024 US images, to train AI models to predict vaginal delivery (VD) and cesarean section (CS) outcomes after IOL. The best overall model used only clinical data (F1-score: 0.736; positive predictive value (PPV): 0.734). The imaging models employed fetal head, abdomen and femur US images, showing limited discriminative results. The best model used femur images (F1-score: 0.594; PPV: 0.580). Consequently, we constructed ensemble models to test whether US imaging could enhance the clinical data model. The best ensemble model included clinical data and US femur images (F1-score: 0.689; PPV: 0.693), presenting a false positive and false negative interesting trade-off. The model accurately predicted CS on 4 additional cases, despite misclassifying 20 additional VD, resulting in a 6.0% decrease in average accuracy compared to the clinical data model. Hence, integrating US imaging into the latter model can be a new development in assisting mode of delivery counseling.
引用
收藏
页数:13
相关论文
共 63 条
[1]   Deep ensemble learning for Alzheimer's disease classification [J].
An, Ning ;
Ding, Huitong ;
Yang, Jiaoyun ;
Au, Rhoda ;
Ang, Ting F. A. .
JOURNAL OF BIOMEDICAL INFORMATICS, 2020, 105
[2]   Multi-centre deep learning for placenta segmentation in obstetric ultrasound with multi-observer and cross-country generalization [J].
Andreasen, Lisbeth Anita ;
Feragen, Aasa ;
Christensen, Anders Nymark ;
Thybo, Jonathan Kistrup ;
Svendsen, Morten Bo S. ;
Zepf, Kilian ;
Lekadir, Karim ;
Tolsgaard, Martin Gronnebaek .
SCIENTIFIC REPORTS, 2023, 13 (01)
[3]  
[Anonymous], 2009, Obstet Gynecol, V114, P386, DOI 10.1097/AOG.0b013e3181b48ef5
[4]  
[Anonymous], 2021, Inducing Labour
[5]   An ensemble of neural networks provides expert-level prenatal detection of complex congenital heart disease [J].
Arnaout, Rima ;
Curran, Lara ;
Zhao, Yili ;
Levine, Jami C. ;
Chinn, Erin ;
Moon-Grady, Anita J. .
NATURE MEDICINE, 2021, 27 (05) :882-+
[6]   Explanatory variables and nomogram of a clinical prediction model to estimate the risk of caesarean section after term induction [J].
Bademkiran, Muhammed Hanifi ;
Bademkiran, Cihan ;
Ege, Serhat ;
Peker, Nurullah ;
Sucu, Seyhun ;
Obut, Mehmet ;
Demirel, Mehmet Ozgur ;
Samanci, Serhat ;
Bagli, Ihsan ;
Celik, Kiymet .
JOURNAL OF OBSTETRICS AND GYNAECOLOGY, 2021, 41 (03) :367-373
[7]   Interventions to reduce unnecessary caesarean sections in healthy women and babies [J].
Betran, Ana Pilar ;
Temmerman, Marleen ;
Kingdon, Carol ;
Mohiddin, Abdu ;
Opiyo, Newton ;
Torloni, Maria Regina ;
Zhang, Jun ;
Musana, Othiniel ;
Wanyonyi, Sikolia Z. ;
Gulmezoglu, Ahmet Metin ;
Downe, Soo .
LANCET, 2018, 392 (10155) :1358-1368
[8]   Evaluation of deep convolutional neural networks for automatic classification of common maternal fetal ultrasound planes [J].
Burgos-Artizzu, Xavier P. ;
Coronado-Gutierrez, David ;
Valenzuela-Alcaraz, Brenda ;
Bonet-Carne, Elisenda ;
Eixarch, Elisenda ;
Crispi, Fatima ;
Gratacos, Eduard .
SCIENTIFIC REPORTS, 2020, 10 (01)
[9]   Safe prevention of the primary cesarean delivery [J].
Caughey, Aaron B. ;
Cahill, Alison G. ;
Guise, Jeanne-Marie ;
Rouse, Dwight J. .
AMERICAN JOURNAL OF OBSTETRICS AND GYNECOLOGY, 2014, 210 (03) :179-193
[10]   Xception: Deep Learning with Depthwise Separable Convolutions [J].
Chollet, Francois .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :1800-1807