Fourth-Order Accurate Compact Scheme for First-Order Maxwell's Equations

被引:0
作者
Versano, I. [1 ]
Turkel, E. [1 ]
Tsynkov, S. [2 ]
机构
[1] Tel Aviv Univ, Sch Math Sci, IL-6997801 Tel Aviv, Israel
[2] North Carolina State Univ, Box 8205, Raleigh, NC 27695 USA
关键词
Compact finite differences; Maxwell's equations; High order accuracy; Bounded domain; DISPERSION;
D O I
10.1007/s10915-024-02583-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We construct a compact fourth-order scheme, in space and time, for the time-dependent Maxwell's equations given as a first-order system on a staggered (Yee) grid. At each time step, we update the fields by solving positive definite second-order elliptic equations. We develop compatible boundary conditions for these elliptic equations while maintaining a compact stencil. The proposed scheme is compared computationally with a non-compact scheme and with a convolutional dispersion relation preserving (DRP) scheme.
引用
收藏
页数:25
相关论文
共 19 条
[1]   ON ACCURACY CONDITIONS FOR THE NUMERICAL COMPUTATION OF WAVES [J].
BAYLISS, A ;
GOLDSTEIN, CI ;
TURKEL, E .
JOURNAL OF COMPUTATIONAL PHYSICS, 1985, 59 (03) :396-404
[2]   A systematic approach to numerical dispersion in Maxwell solvers [J].
Blinne, Alexander ;
Schinkel, David ;
Kuschel, Stephan ;
Elkina, Nina ;
Rykovanov, Sergey G. ;
Zepf, Matt .
COMPUTER PHYSICS COMMUNICATIONS, 2018, 224 :273-281
[3]   Numerical Simulation of Time-Harmonic Waves in Inhomogeneous Media using Compact High Order Schemes [J].
Britt, Steven ;
Tsynkov, Semyon ;
Turkel, Eli .
COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2011, 9 (03) :520-541
[4]  
Chollet F., 2015, keras. io
[5]  
Deraemaeker A, 1999, INT J NUMER METH ENG, V46, P471, DOI 10.1002/(SICI)1097-0207(19991010)46:4<471::AID-NME684>3.0.CO
[6]  
2-6
[7]  
Gottlieb D., 1996, 12 ANN REV PROGR APP, V2, P1122
[8]  
Gustafsson B., 2013, Time dependent problems and difference methods, Pure and Applied Mathematics
[9]  
KREISS HO, 1972, TELLUS, V24, P199
[10]  
Landau L., 2013, The Classical Theory of Fields. COURSE OF THEORETICAL PHYSICS