Rationally seeded computational protein design of α-helical barrels

被引:11
作者
Albanese, Katherine I. [1 ,2 ]
Petrenas, Rokas [1 ]
Pirro, Fabio [1 ]
Naudin, Elise A. [1 ]
Borucu, Ufuk [3 ]
Dawson, William M. [1 ]
Scott, D. Arne [4 ]
Leggett, Graham. J. [5 ]
Weiner, Orion D. [6 ]
Oliver, Thomas A. A. [1 ]
Woolfson, Derek N. [1 ,2 ,3 ,7 ]
机构
[1] Univ Bristol, Sch Chem, Bristol, England
[2] Univ Bristol, Max Planck Bristol Ctr Minimal Biol, Bristol, England
[3] Univ Bristol, Sch Biochem, Med Sci Bldg, Bristol, England
[4] Rosa Biotech, Sci Creates St Philips, Bristol, England
[5] Univ Sheffield, Dept Chem, Sheffield, England
[6] Univ Calif San Francisco, Cardiovasc Res Inst, Dept Biochem & Biophys, San Francisco, CA USA
[7] Univ Bristol, Bristol BioDesign Inst, Bristol, England
基金
英国生物技术与生命科学研究理事会; 英国工程与自然科学研究理事会; 美国国家卫生研究院;
关键词
ANTIPARALLEL COILED-COIL; DE-NOVO DESIGN; CRYSTALLOGRAPHIC STRUCTURE; REPEAT PROTEIN; BINDING; MODEL; DATABASE; REVEALS; SPACE;
D O I
10.1038/s41589-024-01642-0
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Computational protein design is advancing rapidly. Here we describe efficient routes starting from validated parallel and antiparallel peptide assemblies to design two families of alpha-helical barrel proteins with central channels that bind small molecules. Computational designs are seeded by the sequences and structures of defined de novo oligomeric barrel-forming peptides, and adjacent helices are connected by loop building. For targets with antiparallel helices, short loops are sufficient. However, targets with parallel helices require longer connectors; namely, an outer layer of helix-turn-helix-turn-helix motifs that are packed onto the barrels. Throughout these computational pipelines, residues that define open states of the barrels are maintained. This minimizes sequence sampling, accelerating the design process. For each of six targets, just two to six synthetic genes are made for expression in Escherichia coli. On average, 70% of these genes express to give soluble monomeric proteins that are fully characterized, including high-resolution structures for most targets that match the design models with high accuracy. An efficient computational pipeline starting from validated peptide assemblies has been used to design two families of alpha-helical barrel proteins with functionalizable channels. This rationally seeded computational protein design approach delivers soluble, monomeric proteins that match the design targets accurately and with high success rates.
引用
收藏
页码:991 / 999
页数:15
相关论文
共 89 条
[1]   PHENIX: a comprehensive Python']Python-based system for macromolecular structure solution [J].
Adams, Paul D. ;
Afonine, Pavel V. ;
Bunkoczi, Gabor ;
Chen, Vincent B. ;
Davis, Ian W. ;
Echols, Nathaniel ;
Headd, Jeffrey J. ;
Hung, Li-Wei ;
Kapral, Gary J. ;
Grosse-Kunstleve, Ralf W. ;
McCoy, Airlie J. ;
Moriarty, Nigel W. ;
Oeffner, Robert ;
Read, Randy J. ;
Richardson, David C. ;
Richardson, Jane S. ;
Terwilliger, Thomas C. ;
Zwart, Peter H. .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2010, 66 :213-221
[2]   De novo protein design by deep network hallucination [J].
Anishchenko, Ivan ;
Pellock, Samuel J. ;
Chidyausiku, Tamuka M. ;
Ramelot, Theresa A. ;
Ovchinnikov, Sergey ;
Hao, Jingzhou ;
Bafna, Khushboo ;
Norn, Christoffer ;
Kang, Alex ;
Bera, Asim K. ;
DiMaio, Frank ;
Carter, Lauren ;
Chow, Cameron M. ;
Montelione, Gaetano T. ;
Baker, David .
NATURE, 2021, 600 (7889) :547-+
[3]   Engineering protein stability with atomic precision in a monomeric miniprotein [J].
Baker, Emily G. ;
Williams, Christopher ;
Hudson, Kieran L. ;
Bartlett, Gail J. ;
Heal, Jack W. ;
Goff, Kathryn L. Porter ;
Sessions, Richard B. ;
Crump, Matthew P. ;
Woolfson, Derek N. .
NATURE CHEMICAL BIOLOGY, 2017, 13 (07) :764-+
[4]   Improving de novo protein binder design with deep learning [J].
Bennett, Nathaniel R. ;
Coventry, Brian ;
Goreshnik, Inna ;
Huang, Buwei ;
Allen, Aza ;
Vafeados, Dionne ;
Peng, Ying Po ;
Dauparas, Justas ;
Baek, Minkyung ;
Stewart, Lance ;
DiMaio, Frank ;
De Munck, Steven ;
Savvides, Savvas N. ;
Baker, David .
NATURE COMMUNICATIONS, 2023, 14 (01)
[5]   The Protein Data Bank [J].
Berman, HM ;
Westbrook, J ;
Feng, Z ;
Gilliland, G ;
Bhat, TN ;
Weissig, H ;
Shindyalov, IN ;
Bourne, PE .
NUCLEIC ACIDS RESEARCH, 2000, 28 (01) :235-242
[6]   Exploring the repeat protein universe through computational protein design [J].
Brunette, T. J. ;
Parmeggiani, Fabio ;
Huang, Po-Ssu ;
Bhabha, Gira ;
Ekiert, Damian C. ;
Tsutakawa, Susan E. ;
Hura, Greg L. ;
Tainer, John A. ;
Baker, David .
NATURE, 2015, 528 (7583) :580-+
[7]   RCSB Protein Data Bank (RCSB.org): delivery of experimentally-determined PDB structures alongside one million computed structure models of proteins from artificial intelligence/machine learning [J].
Burley, Stephen K. ;
Bhikadiya, Charmi ;
Bi, Chunxiao ;
Bittrich, Sebastian ;
Chao, Henry ;
Chen, Li ;
Craig, Paul A. ;
Crichlow, Gregg, V ;
Dalenberg, Kenneth ;
Duarte, Jose M. ;
Dutta, Shuchismita ;
Fayazi, Maryam ;
Feng, Zukang ;
Flatt, Justin W. ;
Ganesan, Sai ;
Ghosh, Sutapa ;
Goodsell, David S. ;
Green, Rachel Kramer ;
Guranovic, Vladimir ;
Henry, Jeremy ;
Hudson, Brian P. ;
Khokhriakov, Igor ;
Lawson, Catherine L. ;
Liang, Yuhe ;
Lowe, Robert ;
Peisach, Ezra ;
Persikova, Irina ;
Piehl, Dennis W. ;
Rose, Yana ;
Sali, Andrej ;
Segura, Joan ;
Sekharan, Monica ;
Shao, Chenghua ;
Vallat, Brinda ;
Voigt, Maria ;
Webb, Ben ;
Westbrook, John D. ;
Whetstone, Shamara ;
Young, Jasmine Y. ;
Zalevsky, Arthur ;
Zardecki, Christine .
NUCLEIC ACIDS RESEARCH, 2023, 51 (D1) :D488-D508
[8]  
Burton AJ, 2016, NAT CHEM, V8, P837, DOI [10.1038/NCHEM.2555, 10.1038/nchem.2555]
[9]   ARCIMBOLDO on coiled coils [J].
Caballero, Iracema ;
Sammito, Massimo ;
Millan, Claudia ;
Lebedev, Andrey ;
Soler, Nicolas ;
Uson, Isabel .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2018, 74 :194-204
[10]   Progress in vaccine development for infectious diseases-a Keystone Symposia report [J].
Cable, Jennifer ;
Graham, Barney S. ;
Koup, Richard A. ;
Seder, Robert A. ;
Kariko, Katalin ;
Pardi, Norbert ;
Barouch, Dan H. ;
Sharma, Bhawna ;
Rauch, Susanne ;
Nachbagauer, Raffael ;
Forsell, Mattias N. E. ;
Schotsaert, Michael ;
Ellebedy, Ali H. ;
Lore, Karin ;
Irvine, Darrell J. ;
Pilkington, Emily ;
Tahtinen, Siri ;
Thompson, Elizabeth A. ;
Feraoun, Yanis ;
King, Neil P. ;
Saunders, Kevin ;
Alter, Galit ;
Moin, Syed M. ;
Sliepen, Kwinten ;
Karlsson Hedestam, Gunilla B. ;
Wardemann, Hedda ;
Pulendran, Bali ;
Doria-Rose, Nicole A. ;
He, Wan-Ting ;
Juno, Jennifer A. ;
Ataca, Sila ;
Wheatley, Adam K. ;
McLellan, Jason S. ;
Walker, Laura M. ;
Lederhofer, Julia ;
Lindesmith, Lisa C. ;
Wille, Holger ;
Hotez, Peter J. ;
Bekker, Linda-Gail .
ANNALS OF THE NEW YORK ACADEMY OF SCIENCES, 2023, 1524 (01) :65-86