Convex Bodies of Constant Width with Exponential Illumination Number

被引:1
作者
Arman, Andrii [1 ]
Bondarenko, Andrii [2 ]
Prymak, Andriy [1 ]
机构
[1] Univ Manitoba, Dept Math, Winnipeg, MB R3T 2N2, Canada
[2] Norwegian Univ Sci & Technol, Dept Math Sci, N-7491 Trondheim, Norway
关键词
Convex bodies of constant width; Illumination number; Sphere covering;
D O I
10.1007/s00454-024-00647-9
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We show that there exist convex bodies of constant width in En\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {E}}<^>n$$\end{document} with illumination number at least (cos(pi/14)+o(1))-n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\cos (\pi /14)+o(1))<^>{-n}$$\end{document}, answering a question by Kalai. Furthermore, we prove the existence of finite sets of diameter 1 in En\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {E}}<^>n$$\end{document} which cannot be covered by (2/3-o(1))n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(2/\sqrt{3}-o(1))<^>{n}$$\end{document} balls of diameter 1, improving a result of Bourgain and Lindenstrauss.
引用
收藏
页码:196 / 202
页数:7
相关论文
共 14 条
[1]   On the X-ray Number of Almost Smooth Convex Bodies and of Convex Bodies of Constant Width [J].
Bezdek, K. ;
Kiss, Gy. .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2009, 52 (03) :342-348
[2]   The Geometry of Homothetic Covering and Illumination [J].
Bezdek, Karoly ;
Khan, Muhammad A. .
DISCRETE GEOMETRY AND SYMMETRY: DEDICATED TO KAROLY BEZDEK AND EGON SCHULTE ON THE OCCASION OF THEIR 60TH BIRTHDAYS, 2018, 234 :1-30
[3]  
Boltyanski V., 1960, IZV MOLD FIL AN SSSR, V76, P77
[4]   Spherical coverings and X-raying convex bodies of constant width [J].
Bondarenko, Andriy ;
Prymak, Andriy ;
Radchenko, Danylo .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2021, :860-866
[5]  
Boroczky K, 2003, ALGORITHM COMBINAT, V25, P235
[6]  
BOURGAIN J, 1991, LECT NOTES MATH, V1469, P138
[7]  
Brass P., 2005, Research Problems in Discrete Geometry
[8]  
Danzer L., 1965, P C CONVEXITY COPENH, P41
[9]  
Eggleston H. G., 1958, CAMBRIDGE TRACTS MAT, V47
[10]  
Erdos P., 1962, ACTA ARITH, V7, P281