On Chow Rings of Quiver Moduli

被引:0
|
作者
Belmans, Pieter [1 ]
Franzen, Hans [2 ]
机构
[1] Univ Luxembourg, Dept Math, 6 Ave Fonte, L-4364 Esch Sur Alzette, Luxembourg
[2] Paderborn Univ, Inst Math, Warburger Str 100, D-33098 Paderborn, Germany
关键词
VECTOR-BUNDLES; SPACES; REPRESENTATIONS; COHOMOLOGY; VARIETIES;
D O I
10.1093/imrn/rnad306
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We describe the point class and Todd class in the Chow ring of a moduli space of quiver representations, building on a result of Ellingsrud-Stromme. This, together with the presentation of the Chow ring by the second author, makes it possible to compute integrals on quiver moduli. To do so, we construct a canonical morphism of universal representations in great generality, and along the way point out its relation to the Kodaira-Spencer morphism. We illustrate the results by computing some invariants of some "small" Kronecker moduli spaces. We also prove that the first non-trivial (6-dimensional) Kronecker moduli space is isomorphic to the zero locus of a general section of $\mathcal{Q}<^>{\vee }(1)$ on $\textrm{Gr}(2,8)$.
引用
收藏
页码:10255 / 10272
页数:18
相关论文
共 50 条
  • [21] The Chow Rings of Generalized Grassmannians
    Haibao Duan
    Xuezhi Zhao
    Foundations of Computational Mathematics, 2010, 10 : 245 - 274
  • [22] Parallels between Moduli of Quiver Representations and Vector Bundles over Curves
    Hoskins, Victoria
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2018, 14
  • [23] Some results on the moduli spaces of quiver bundles
    Alvarez-Consul, Luis
    GEOMETRIAE DEDICATA, 2009, 139 (01) : 99 - 120
  • [24] Moduli spaces of meromorphic connections and quiver varieties
    Hiroe, Kazuki
    Yamakawa, Daisuke
    ADVANCES IN MATHEMATICS, 2014, 266 : 120 - 151
  • [25] THE COHOMOLOGY RINGS OF MODULI STACKS OF PRINCIPAL BUNDLES OVER CURVES
    Heinloth, Jochen
    Schmitt, Alexander H. W.
    DOCUMENTA MATHEMATICA, 2010, 15 : 423 - 488
  • [26] Chow Ring of the Moduli Space of Stable Sheaves Supported on Quartic Curves
    Chung, Kiryong
    Moon, Han-Bom
    QUARTERLY JOURNAL OF MATHEMATICS, 2017, 68 (03) : 851 - 887
  • [27] Chow-Witt rings of Grassmannia
    Wendt, Matthias
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2024, 24 (01):
  • [28] EQUIVARIANT OPERATIONAL CHOW RINGS OF T-LINEAR SCHEMES
    Gonzales, Richard P.
    DOCUMENTA MATHEMATICA, 2015, 20 : 401 - 432
  • [29] Inertial Chow rings of toric stacks
    Coleman, Thomas
    Edidin, Dan
    MANUSCRIPTA MATHEMATICA, 2018, 156 (3-4) : 341 - 369
  • [30] Simplicial generation of Chow rings of matroids
    Backman, Spencer
    Eur, Christopher
    Simpson, Connor
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2024, 26 (11) : 4491 - 4535