MTDFusion: A Multilayer Triple Dense Network for Infrared and Visible Image Fusion

被引:12
作者
Karim, Shahid [1 ,2 ,3 ,4 ]
Tong, Geng [1 ,2 ,3 ,4 ,5 ]
Li, Jinyang [1 ,2 ,3 ,4 ]
Yu, Xiaochang [2 ,3 ,4 ,5 ]
Hao, Jia [2 ,3 ,4 ,5 ]
Qadir, Akeel [2 ,3 ,4 ,5 ]
Yu, Yiting [1 ,2 ,3 ,4 ,5 ]
机构
[1] Northwestern Polytech Univ Shenzhen, Res & Dev Inst, Shenzhen 518057, Peoples R China
[2] Northwestern Polytech Univ, Coll Mech Engn, Minist Educ, Xian 710072, Peoples R China
[3] Northwestern Polytech Univ, Key Lab Micro Nano Syst Aerosp, Minist Educ, Xian 710072, Peoples R China
[4] Northwestern Polytech Univ, Shaanxi Prov Key Lab Micro & Nano Electromech Syst, Xian 701172, Peoples R China
[5] Northwestern Polytech Univ, Ningbo Inst, Res Ctr Smart Sensing Chips, Ningbo 315103, Peoples R China
关键词
Dense network (DN); difference image (DI); image fusion; infrared (IR) image; visible (VIS) image; MUTUAL INFORMATION; GRADIENT; NEST;
D O I
10.1109/TIM.2023.3329148
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The ultimate image with important information and better visuals can be obtained by fusing infrared (IR) and visual images. Several fusion methods consist of complex networks to derive the finest parameters from different source images and do not exploit reliable and salient information completely. To avoid the limitations of information loss and fusion of feature information, we have proposed a multilayer triple dense network (DN) for IR and visible (VIS) image fusion named MTDFusion, which completely exploits salient features and utilizes the residual features from the combination of input images adaptively. The encoding network is designed as a triple network of dense blocks that takes inputs as IR, VIS, and the difference extracted from IR and VIS images. The fusion layer exploits the weighted combination of input images, and decoding layers work conventionally. The results obtained by our proposed approach reveal optimal image details and higher contrast. We have improved the loss function by combining smooth- L-1 and structured similarity index (SSIM) loss functions for our proposed method. In addition, the different variations of $\lambda s$ in SSIM are examined using qualitative and quantitative assessments. The results achieve optimal fusion performance compared to several state-of-the-art (SOTA) methods. The source code for MTDFusion is available at https://github.com/tgg-77/MTDFusion.
引用
收藏
页码:1 / 17
页数:17
相关论文
共 63 条
[1]   Infrared and visible image fusion with supervised convolutional neural network [J].
An, Wen-Bo ;
Wang, Hong-Mei .
OPTIK, 2020, 219
[2]  
[Anonymous], 2022, CAA J. Autom. Sinica, V9, P1200
[3]  
[Anonymous], 2021, Eur. J. Clin. Invest., V51
[4]   Artificial intelligence-enabled Internet of Things-based system for COVID-19 screening using aerial thermal imaging [J].
Barnawi, Ahmed ;
Chhikara, Prateek ;
Tekchandani, Rajkumar ;
Kumar, Neeraj ;
Alzahrani, Bander .
FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2021, 124 :119-132
[5]   Automated processing of thermal imaging to detect COVID-19 [J].
Brzezinski, Rafael Y. ;
Rabin, Neta ;
Lewis, Nir ;
Peled, Racheli ;
Kerpel, Ariel ;
Tsur, Avishai M. ;
Gendelman, Omer ;
Naftali-Shani, Nili ;
Gringauz, Irina ;
Amital, Howard ;
Leibowitz, Avshalom ;
Mayan, Haim ;
Ben-Zvi, Ilan ;
Heler, Eyal ;
Shechtman, Liran ;
Rogovski, Ori ;
Shenhar-Tsarfaty, Shani ;
Konen, Eli ;
Marom, Edith M. ;
Ironi, Avinoah ;
Rahav, Galia ;
Zimmer, Yair ;
Grossman, Ehud ;
Ovadia-Blechman, Zehava ;
Leor, Jonathan ;
Hoffer, Oshrit .
SCIENTIFIC REPORTS, 2021, 11 (01)
[6]   A human perception inspired quality metric for image fusion based on regional information [J].
Chen, Hao ;
Varshney, Pramod K. .
INFORMATION FUSION, 2007, 8 (02) :193-207
[7]  
Chen JF, 2020, Arxiv, DOI arXiv:2009.09465
[8]  
Chen L. Cheng, 2022, Opt. Lasers Eng., V148
[9]   Normalized Total Gradient: A New Measure for Multispectral Image Registration [J].
Chen, Shu-Jie ;
Shen, Hui-Liang ;
Li, Chunguang ;
Xin, John H. .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (03) :1297-1310
[10]   Image fusion metric based on mutual information and Tsallis entropy [J].
Cvejic, N. ;
Canagarajah, C. N. ;
Bull, D. R. .
ELECTRONICS LETTERS, 2006, 42 (11) :626-627