BrainAGE, brain health, and mental disorders: A systematic review

被引:8
作者
Seitz-Holland, Johanna [1 ,2 ,6 ]
Haas, Shalaila S. [3 ]
Penzel, Nora [2 ]
Reichenberg, Abraham [3 ,4 ,5 ]
Pasternak, Ofer [1 ,2 ]
机构
[1] Harvard Med Sch, Brigham & Womens Hosp, Dept Psychiat, Boston, MA USA
[2] Harvard Med Sch, Massachusetts Gen Hosp, Dept Psychiat, Boston, MA USA
[3] Icahn Sch Med Mt Sinai, Dept Psychiat, New York, NY USA
[4] Icahn Sch Med Mt Sinai, Dept Environm Med & Publ Hlth, New York, NY USA
[5] Icahn Sch Med Mt Sinai, Mindich Child Hlth & Dev Inst, New York, NY USA
[6] BWH Psychiat Res, Psychiat Neuroimaging Lab, 399 Revolut Dr, Somerville, MA 02145 USA
关键词
Neuroimaging; Neurodegeneration; Serious mental illness; Biological age; Neuropsychiatric disorders; Dementia; Schizophrenia; Bipolar disorder; Depression; Anxiety; Machine; -learning; Prediction; Paradox of biomarkers; INDIVIDUAL BRAINAGE; WHITE-MATTER; ALZHEIMERS-DISEASE; AGE; SCHIZOPHRENIA; METAANALYSIS;
D O I
10.1016/j.neubiorev.2024.105581
中图分类号
B84 [心理学]; C [社会科学总论]; Q98 [人类学];
学科分类号
03 ; 0303 ; 030303 ; 04 ; 0402 ;
摘要
The imaging-based method of brainAGE aims to characterize an individual's vulnerability to age-related brain changes. The present study systematically reviewed brainAGE findings in neuropsychiatric conditions and discussed the potential of brainAGE as a marker for biological age. A systematic PubMed search (from inception to March 6th, 2023) identified 273 articles. The 30 included studies compared brainAGE between neuropsychiatric and healthy groups (n >= 50). We presented results qualitatively and adapted a bias risk assessment questionnaire. The imaging modalities, design, and input features varied considerably between studies. While the studies found higher brainAGE in neuropsychiatric conditions (11 mild cognitive impairment/ dementia, 11 schizophrenia spectrum/ other psychotic and bipolar disorder, six depression/ anxiety, two multiple groups), the associations with clinical characteristics were mixed. While brainAGE is sensitive to group differences, limitations include the lack of diverse training samples, multi-modal studies, and external validation. Only a few studies obtained longitudinal data, and all have used algorithms built solely to predict chronological age. These limitations impede the validity of brainAGE as a biological age marker.
引用
收藏
页数:20
相关论文
共 106 条
[1]   BrainAGE and regional volumetric analysis of a Buddhist monk: a longitudinal MRI case study [J].
Adluru, Nagesh ;
Korponay, Cole H. ;
Norton, Derek L. ;
Goldman, Robin I. ;
Davidson, Richard J. .
NEUROCASE, 2020, 26 (02) :79-90
[2]   50 Years of Cognitive Aging Theory [J].
Anderson, Nicole D. ;
Craik, Fergus I. M. .
JOURNALS OF GERONTOLOGY SERIES B-PSYCHOLOGICAL SCIENCES AND SOCIAL SCIENCES, 2017, 72 (01) :1-6
[3]   Dose-dependent relationship between social drinking and brain aging [J].
Angebrandt, Alexanndra ;
Abulseoud, Osama A. ;
Kisner, Mallory ;
Diazgranados, Nancy ;
Momenan, Reza ;
Yang, Yihong ;
Stein, Elliot A. ;
Ross, Thomas J. .
NEUROBIOLOGY OF AGING, 2022, 111 :71-81
[4]  
Aslam Sadaf, 2010, Indian J Sex Transm Dis AIDS, V31, P47, DOI 10.4103/0253-7184.69003
[5]   Sample-Size Determination Methodologies for Machine Learning in Medical Imaging Research: A Systematic Review [J].
Balki, Indranil ;
Amirabadi, Afsaneh ;
Levman, Jacob ;
Martel, Anne L. ;
Emersic, Ziga ;
Meden, Blaz ;
Garcia-Pedrero, Angel ;
Ramirez, Saul C. ;
Kong, Dehan ;
Moody, Alan R. ;
Tyrrell, Pascal N. .
CANADIAN ASSOCIATION OF RADIOLOGISTS JOURNAL-JOURNAL DE L ASSOCIATION CANADIENNE DES RADIOLOGISTES, 2019, 70 (04) :344-353
[6]   Accelerated brain aging in major depressive disorder and antidepressant treatment response: A CAN-BIND report [J].
Ballester, Pedro L. ;
Suh, Jee Su ;
Nogovitsyn, Nikita ;
Hassel, Stefanie ;
Strother, Stephen C. ;
Arnott, Stephen R. ;
Minuzzi, Luciano ;
Sassi, Roberto B. ;
Lam, Raymond W. ;
Milev, Roumen ;
Muller, Daniel J. ;
Taylor, Valerie H. ;
Kennedy, Sidney H. ;
Frey, Benicio N. .
NEUROIMAGE-CLINICAL, 2021, 32
[7]   MRI signatures of brain age and disease over the lifespan based on a deep brain network and 14 468 individuals worldwide [J].
Bashyam, Vishnu M. ;
Erus, Guray ;
Doshi, Jimit ;
Habes, Mohamad ;
Nasralah, Ilya ;
Truelove-Hill, Monica ;
Srinivasan, Dhivya ;
Mamourian, Liz ;
Pomponio, Raymond ;
Fan, Yong ;
Launer, Lenore J. ;
Masters, Colin L. ;
Maruff, Paul ;
Zhuo, Chuanjun ;
Volzke, Henry ;
Johnson, Sterling C. ;
Fripp, Jurgen ;
Koutsouleris, Nikolaos ;
Satterthwaite, Theodore D. ;
Wolf, Daniel ;
Gur, Raquel E. ;
Gur, Ruben C. ;
Morris, John ;
Albert, Marilyn S. ;
Grabe, Hans J. ;
Resnick, Susan ;
Bryan, R. Nick ;
Wolk, David A. ;
Shou, Haochang ;
Davatzikos, Christos .
BRAIN, 2020, 143 :2312-2324
[8]   Cardiometabolic risk factors associated with brain age and accelerate brain ageing [J].
Beck, Dani ;
de Lange, Ann-Marie G. ;
Pedersen, Mads L. ;
Alnaes, Dag ;
Maximov, Ivan I. ;
Voldsbekk, Irene ;
Richard, Genevieve ;
Sanders, Anne-Marthe ;
Ulrichsen, Kristine M. ;
Dorum, Erlend S. ;
Kolskar, Knut K. ;
Hogestol, Einar A. ;
Steen, Nils Eiel ;
Djurovic, Srdjan ;
Andreassen, Ole A. ;
Nordvik, Jan E. ;
Kaufmann, Tobias ;
Westlye, Lars T. .
HUMAN BRAIN MAPPING, 2022, 43 (02) :700-720
[9]   Disappearing metabolic youthfulness in the cognitively impaired female brain [J].
Beheshti, Iman ;
Nugent, Scott ;
Potvin, Olivier ;
Duchesne, Simon .
NEUROBIOLOGY OF AGING, 2021, 101 :224-229
[10]   T1-weighted MRI-driven Brain Age Estimation in Alzheimer's Disease and Parkinson's Disease [J].
Beheshti, Iman ;
Mishra, Shiwangi ;
Sone, Daichi ;
Khanna, Pritee ;
Matsuda, Hiroshi .
AGING AND DISEASE, 2020, 11 (03) :618-628