Cloud computing-based framework for heart disease classification using quantum machine learning approach

被引:6
作者
Enad, Huda Ghazi [2 ]
Mohammed, Mazin Abed [1 ]
机构
[1] Univ Anbar, Coll Comp Sci & Informat Technol, Dept Artificial Intelligence, Anbar 31001, Iraq
[2] Univ Anbar, Coll Comp Sci & Informat Technol, Comp Sci Dept, Anbar 31001, Iraq
关键词
heart disease; machine learning; quantum machine learning; quantum support vector machines; bagging_QSVM;
D O I
10.1515/jisys-2023-0261
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Accurate early identification and treatment of cardiovascular diseases can prevent heart failure problems and reduce mortality rates. This study aims to use quantum learning to predict heart problems to increase the accuracy of traditional prediction and classification methods. Machine learning (ML) and deep learning (DL) techniques need quantum learning to quickly and accurately analyze massive volumes of complex data. With quantum computing, the suggested DL and ML algorithms can change their predictions on the basis of changes in the dataset. This approach could help with the early and accurate detection of chronic diseases. The Cleveland heart disease dataset is undergoing preliminary processing to validate missing values to increase the precision rate and prevent incorrect forecasts. This study examined the feasibility of employing and deploying a quantum ML (QML) framework via cloud computing to categorize cardiac conditions. The research was divided into four sections. First, the principal component analysis was used to preprocess the Cleveland dataset, recursive feature elimination was used to select features, and min-max normalization was used to give the dataset a high-dimensional value. Second, we compared traditional classifiers, such as support vector machine (SVM) and artificial neural network, with the quantum approach to verify the quantum approach's efficiency. Third, we examined two unique QML classification methods: quantum neural networks (QNNs) and quantum SVM (QSVM). Fourth, bagging-QSVM was developed and deployed as an ensemble learning model. Experimental results using the QNN show an accuracy of 77%, a precision of 76%, a recall of 73%, and an F1 score of 75%. With an accuracy of 85%, a precision of 79%, a recall of 90%, and an F1-score of 84%, the QSVM method demonstrated a much better performance than the QNN. Particularly, the Bagging_QSVM model exhibited an outstanding performance, with a flawless score of 100% across all critical performance measures. The study shows that the bagging method for ensemble learning is a solid way of increasing the accuracy of quantum method predictions.
引用
收藏
页数:31
相关论文
共 29 条
[1]   Explainable Heart Disease Prediction Using Ensemble-Quantum Machine Learning Approach [J].
Abdulsalam, Ghada ;
Meshoul, Souham ;
Shaiba, Hadil .
INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2023, 36 (01) :761-779
[2]   Gray wolf optimization-extreme learning machine approach for diabetic retinopathy detection [J].
Albadr, Musatafa Abbas Abbood ;
Ayob, Masri ;
Tiun, Sabrina ;
AL-Dhief, Fahad Taha ;
Hasan, Mohammad Kamrul .
FRONTIERS IN PUBLIC HEALTH, 2022, 10
[3]   Cardiovascular Disease Detection using Ensemble Learning [J].
Alqahtani, Abdullah ;
Alsubai, Shtwai ;
Sha, Mohemmed ;
Vilcekova, Lucia ;
Javed, Talha .
COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2022, 2022
[4]   Heart Failure Detection Using Instance Quantum Circuit Approach and Traditional Predictive Analysis [J].
Alsubai, Shtwai ;
Alqahtani, Abdullah ;
Binbusayyis, Adel ;
Sha, Mohemmed ;
Gumaei, Abdu ;
Wang, Shuihua .
MATHEMATICS, 2023, 11 (06)
[5]  
[Anonymous], Heart Disease Dataset (comprehensive)
[6]   Enhancing Heart Disease Prediction through Ensemble Learning Techniques with Hyperparameter Optimization [J].
Asif, Daniyal ;
Bibi, Mairaj ;
Arif, Muhammad Shoaib ;
Mukheimer, Aiman .
ALGORITHMS, 2023, 16 (06)
[7]   Quantum machine learning for particle physics using a variational quantum classifier [J].
Blance, Andrew ;
Spannowsky, Michael .
JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (02)
[8]   New cardiovascular disease prediction approach using support vector machine and quantum-behaved particle swarm optimization [J].
Elsedimy, E. I. ;
AboHashish, Sara M. M. ;
Algarni, Fahad .
MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (8) :23901-23928
[9]  
Enad HG., 2023, Fusion: Pract Appl, V11, P8, DOI [10.54216/FPA.110101, DOI 10.54216/FPA.110101]
[10]   Comparative performance analysis of quantum machine learning with deep learning for diabetes prediction [J].
Gupta, Himanshu ;
Varshney, Hirdesh ;
Sharma, Tarun Kumar ;
Pachauri, Nikhil ;
Verma, Om Prakash .
COMPLEX & INTELLIGENT SYSTEMS, 2022, 8 (04) :3073-3087