Manipulating the quasi–normal modes of radially symmetric resonators

被引:0
作者
Capers J.R. [1 ]
Patient D.A. [1 ]
Horsley S.A.R. [1 ]
机构
[1] Department of Physics and Astronomy, University of Exeter, Stocker Road, Exeter
基金
英国工程与自然科学研究理事会;
关键词
Eigenvalues and eigenfunctions - Energy harvesting - Frequency response - Natural frequencies - Perturbation techniques;
D O I
10.1364/OE.503349
中图分类号
学科分类号
摘要
The frequency response of a resonator is governed by the locations of its quasi-normal modes in the complex frequency plane. The real part of the quasi–normal mode determines the resonance frequency and the imaginary part determines the width of the resonance. For applications such as energy harvesting and sensing, the ability to manipulate the frequency, linewidth and multipolar nature of resonances is key. Here, we derive two methods for simultaneously controlling the resonance frequency, linewidth and multipolar nature of the resonances of radially symmetric structures. Firstly, we formulate an eigenvalue problem for a global shift in the permittivity of the structure to place a resonance at a particular complex frequency. Next, we employ quasi-normal mode perturbation theory to design radially graded structures with resonances at desired frequencies. Journal © 2023.
引用
收藏
页码:37142 / 37153
页数:11
相关论文
共 74 条
[1]  
Munk B. A., Frequency Selective Surfaces: Theory and Design, (2000)
[2]  
Staude I., Miroshnichenko A. E., Decker M., Fofang N. T., Liu S., Gonzales E., Dominguez J., Luk T. S., Neshev D. N., Brener I., Kivshar Y., Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks, ACS Nano, 7, 9, pp. 7824-7832, (2013)
[3]  
Hentschel M., Koshelev K., Sterl F., Both S., Karst J., Shamsafar L., Weiss T., Kivshar Y., Giessen H., Dielectric mie voids: confining light in air, Light: Sci. Appl, 12, 1, (2023)
[4]  
Novotny L., van Hulst N., Antennas for light, Nat. Photonics, 5, 2, pp. 83-90, (2011)
[5]  
Bharadwaj P., Deutsch B., Novotny L., Optical antennas, Adv. Opt. Photonics, 1, 3, (2009)
[6]  
Powell A. W., Ware J., Beadle J. G., Cheadle D., Loh T. H., Hibbins A. P., Sambles J. R., Strong, omnidirectional radar backscatter from subwavelength, 3d printed metacubes, IET Microw, 14, pp. 1862-1868, (2020)
[7]  
Finlayson E. D., Gallagher C. P., Whittaker T., Goulas A., Engstrom D. S., Whittow W., Sambles J. R., Hibbins A. P., Powell A. W., Microwave backscatter enhancement using radial anisotropy in biomimetic core-shell spheres, Appl. Phys. Lett, 122, 25, (2023)
[8]  
Won R., Into the’mie-tronic’ era, Nat. Photonics, 13, 9, pp. 585-587, (2019)
[9]  
Koshelev K., Kivshar Y., Dielectric resonant metaphotonics, ACS Photonics, 8, 1, pp. 102-112, (2021)
[10]  
Fu Y. H., Kuznetsov A. I., Miroshnichenko A. E., Yu Y. F., Luk'yanchuk B., Directional visible light scattering by silicon nanoparticles, Nat. Commun, 4, 1, (2013)