Numerical solution of eigenvalue problems for a compact integral operator with Green's kernels

被引:1
作者
Bouda, Hamza [1 ]
Allouch, Chafik [1 ]
El Allali, Zakaria [1 ]
Kant, Kapil [2 ]
机构
[1] Multidisciplinary Fac Nador, Team Modeling & Sci Comp, Nador 62000, Morocco
[2] Indian Inst Informat Technol & Management, Dept Engn Sci, ABV, Gwalior 474015, India
关键词
Eigenvalue problem; Projection operator; Legendre polynomials; Superconvergence results; PROJECTION METHODS; GALERKIN METHOD; EQUATIONS;
D O I
10.1007/s43036-024-00352-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper presents spectral projection and modified projection methods for approximating the eigenelements of a compact integral operator with Green's function-type kernels. The projection can either be the orthogonal projection or the interpolatory projection using Legendre polynomials. To the best of our knowledge, this paper is the first to consider the eigenvalue problem with Green's kernels by global polynomials. We analyze the convergence of these methods and their iterated versions, and we establish superconvergence results. The effectiveness of the proposed approach is illustrated through various numerical tests.
引用
收藏
页数:20
相关论文
共 23 条
  • [1] Ahues M., 2001, SPECTRAL COMPUTATION, DOI [10.1201/9781420035827, DOI 10.1201/9781420035827]
  • [2] Discrete superconvergent Nystrom method for integral equations and eigenvalue problems
    Allouch, C.
    Tahrichi, M.
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 2015, 118 : 17 - 29
  • [3] Spectral Approximation Methods for Fredholm Integral Equations with Non-Smooth Kernels
    Allouch, Chafik
    Sbibih, Driss
    Tahrichi, Mohamed
    [J]. MATHEMATICAL MODELLING AND ANALYSIS, 2022, 27 (04) : 652 - 667
  • [4] Superconvergent Nystrom and degenerate kernel methods for eigenvalue problems
    Alouch, C.
    Sablonniere, P.
    Sbibih, D.
    Tahrichi, M.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (20) : 7851 - 7866
  • [5] Spectral Methods For Hammerstein Integral Equations with Nonsmooth Kernels
    Arrai, Mohamed
    Allouch, Chafik
    Bouda, Hamza
    [J]. INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2023, 20 (04)
  • [6] PROJECTION AND ITERATED PROJECTION METHODS FOR NONLINEAR INTEGRAL-EQUATIONS
    ATKINSON, KE
    POTRA, FA
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1987, 24 (06) : 1352 - 1373
  • [7] Atkinson KE., 1997, NUMERICAL SOLUTION I
  • [8] Canuto C., 2006, SCIENTIF COMPUT, DOI 10.1007/978-3-540-30726-6
  • [9] CHATELIN F, 1984, J INTEGRAL EQUAT, V6, P71
  • [10] Chatelin Francoise, 1983, SPECTRAL APPROXIMATI, pxix+458