Targeting valine catabolism to inhibit metabolic reprogramming in prostate cancer

被引:5
作者
Bidgood, Charles L. [1 ]
Philp, Lisa K. [1 ]
Rockstroh, Anja [1 ]
Lehman, Melanie [1 ,2 ]
Nelson, Colleen C. [1 ]
Sadowski, Martin C. [3 ]
Gunter, Jennifer H. [1 ]
机构
[1] Queensland Univ Technol QUT, Translat Res Inst, Australian Prostate Canc Res Ctr Queensland, Ctr Genom & Personalised Hlth,Sch Biomed Sci, Brisbane, Qld, Australia
[2] Univ British Columbia, Vancouver Prostate Ctr, Dept Urol Sci, Vancouver, BC, Canada
[3] Univ Bern, Inst Tissue Med & Pathol, Bern, Switzerland
来源
CELL DEATH & DISEASE | 2024年 / 15卷 / 07期
关键词
AMINO-ACID-METABOLISM; SUCCINATE; CELLS; EXPRESSION;
D O I
10.1038/s41419-024-06893-2
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Metabolic reprogramming and energetic rewiring are hallmarks of cancer that fuel disease progression and facilitate therapy evasion. The remodelling of oxidative phosphorylation and enhanced lipogenesis have previously been characterised as key metabolic features of prostate cancer (PCa). Recently, succinate-dependent mitochondrial reprogramming was identified in high-grade prostate tumours, as well as upregulation of the enzymes associated with branched-chain amino acid (BCAA) catabolism. In this study, we hypothesised that the degradation of the BCAAs, particularly valine, may play a critical role in anapleurotic refuelling of the mitochondrial succinate pool, as well as the maintenance of intracellular lipid metabolism. Through the suppression of BCAA availability, we report significantly reduced lipid content, strongly indicating that BCAAs are important lipogenic fuels in PCa. This work also uncovered a novel compensatory mechanism, whereby fatty acid uptake is increased in response to extracellular valine deprivation. Inhibition of valine degradation via suppression of 3-hydroxyisobutyryl-CoA hydrolase (HIBCH) resulted in a selective reduction of malignant prostate cell proliferation, decreased intracellular succinate and impaired cellular respiration. In combination with a comprehensive multi-omic investigation that incorporates next-generation sequencing, metabolomics, and high-content quantitative single-cell imaging, our work highlights a novel therapeutic target for selective inhibition of metabolic reprogramming in PCa.
引用
收藏
页数:12
相关论文
共 50 条
[41]   Targeting DNMTs to Overcome Enzalutamide Resistance in Prostate Cancer [J].
Farah, Elia ;
Zhang, Zhuangzhuang ;
Utturkar, Sagar M. ;
Liu, Jinpeng ;
Ratliff, Timothy L. ;
Liu, Xiaoqi .
MOLECULAR CANCER THERAPEUTICS, 2022, 21 (01) :193-205
[42]   The anti-diabetic PPARγ agonist Pioglitazone inhibits cell proliferation and induces metabolic reprogramming in prostate cancer [J].
Atas, Emine ;
Berchtold, Kerstin ;
Schlederer, Michaela ;
Prodinger, Sophie ;
Sternberg, Felix ;
Pucci, Perla ;
Steel, Christopher ;
Matthews, Jamie D. ;
James, Emily R. ;
Philippe, Cecile ;
Trachtova, Karolina ;
Moazzami, Ali A. ;
Artamonova, Nastasiia ;
Melchior, Felix ;
Redmer, Torben ;
Timelthaler, Gerald ;
Pohl, Elena E. ;
Turner, Suzanne D. ;
Heidegger, Isabel ;
Krueger, Marcus ;
Resch, Ulrike ;
Kenner, Lukas .
MOLECULAR CANCER, 2025, 24 (01)
[43]   Targeting DNA Damage Response in Prostate and Breast Cancer [J].
Wengner, Antje M. ;
Scholz, Arne ;
Haendler, Bernard .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2020, 21 (21) :1-22
[44]   Intracellular CYTL1, a novel tumor suppressor, stabilizes NDUFV1 to inhibit metabolic reprogramming in breast cancer [J].
Xue, Wenwen ;
Li, Xin ;
Li, Wuhao ;
Wang, Yixuan ;
Jiang, Chengfei ;
Zhou, Lin ;
Gao, Jian ;
Yu, Ying ;
Shen, Yan ;
Xu, Qiang .
SIGNAL TRANSDUCTION AND TARGETED THERAPY, 2022, 7 (01)
[45]   The role of metabolic reprogramming in immune escape of triple-negative breast cancer [J].
Bao, Ruochen ;
Qu, Hongtao ;
Li, Baifeng ;
Cheng, Kai ;
Miao, Yandong ;
Wang, Jiangtao .
FRONTIERS IN IMMUNOLOGY, 2024, 15
[46]   ITGB4-mediated metabolic reprogramming of cancer-associated fibroblasts [J].
Sung, Jin Sol ;
Kang, Chan Woo ;
Kang, Suki ;
Jang, Yeonsue ;
Chae, Young Chan ;
Kim, Baek Gil ;
Cho, Nam Hoon .
ONCOGENE, 2020, 39 (03) :664-676
[47]   Global metabolic reprogramming of colorectal cancer occurs at adenoma stage and is induced by MYC [J].
Satoh, Kiyotoshi ;
Yachida, Shinichi ;
Sugimoto, Masahiro ;
Oshima, Minoru ;
Nakagawa, Toshitaka ;
Akamoto, Shintaro ;
Tabata, Sho ;
Saitoh, Kaori ;
Kato, Keiko ;
Sato, Saya ;
Igarashi, Kaori ;
Aizawa, Yumi ;
Kajino-Sakamoto, Rie ;
Kojima, Yasushi ;
Fujishita, Teruaki ;
Enomoto, Ayame ;
Hirayama, Akiyoshi ;
Ishikawa, Takamasa ;
Taketo, Makoto Mark ;
Kushida, Yoshio ;
Haba, Reiji ;
Okano, Keiichi ;
Tomita, Masaru ;
Suzuki, Yasuyuki ;
Fukuda, Shinji ;
Aoki, Masahiro ;
Soga, Tomoyoshi .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2017, 114 (37) :E7697-E7706
[48]   Role and mechanisms of noncoding RNAs in the regulation of metabolic reprogramming in bladder cancer (Review) [J].
Zhang, Bin ;
Yang, Liming ;
He, Yang ;
Han, Dali ;
Qi, Peng ;
Shang, Panfeng .
INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE, 2023, 52 (03)
[49]   Metabolic Reprogramming of Cancer-Associated Fibroblasts by IDH3α Downregulation [J].
Zhang, Daoxiang ;
Wang, Yongbin ;
Shi, Zhimin ;
Liu, Jingyi ;
Sun, Pan ;
Hou, Xiaodan ;
Zhang, Jian ;
Zhao, Shimin ;
Zhou, Binhua P. ;
Mi, Jun .
CELL REPORTS, 2015, 10 (08) :1335-1348
[50]   Targeting Tryptophan Catabolism in Cancer Immunotherapy Era: Challenges and Perspectives [J].
Peyraud, Florent ;
Guegan, Jean-Philippe ;
Bodet, Dominique ;
Cousin, Sophie ;
Bessede, Alban ;
Italiano, Antoine .
FRONTIERS IN IMMUNOLOGY, 2022, 13