Targeting valine catabolism to inhibit metabolic reprogramming in prostate cancer

被引:5
作者
Bidgood, Charles L. [1 ]
Philp, Lisa K. [1 ]
Rockstroh, Anja [1 ]
Lehman, Melanie [1 ,2 ]
Nelson, Colleen C. [1 ]
Sadowski, Martin C. [3 ]
Gunter, Jennifer H. [1 ]
机构
[1] Queensland Univ Technol QUT, Translat Res Inst, Australian Prostate Canc Res Ctr Queensland, Ctr Genom & Personalised Hlth,Sch Biomed Sci, Brisbane, Qld, Australia
[2] Univ British Columbia, Vancouver Prostate Ctr, Dept Urol Sci, Vancouver, BC, Canada
[3] Univ Bern, Inst Tissue Med & Pathol, Bern, Switzerland
来源
CELL DEATH & DISEASE | 2024年 / 15卷 / 07期
关键词
AMINO-ACID-METABOLISM; SUCCINATE; CELLS; EXPRESSION;
D O I
10.1038/s41419-024-06893-2
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Metabolic reprogramming and energetic rewiring are hallmarks of cancer that fuel disease progression and facilitate therapy evasion. The remodelling of oxidative phosphorylation and enhanced lipogenesis have previously been characterised as key metabolic features of prostate cancer (PCa). Recently, succinate-dependent mitochondrial reprogramming was identified in high-grade prostate tumours, as well as upregulation of the enzymes associated with branched-chain amino acid (BCAA) catabolism. In this study, we hypothesised that the degradation of the BCAAs, particularly valine, may play a critical role in anapleurotic refuelling of the mitochondrial succinate pool, as well as the maintenance of intracellular lipid metabolism. Through the suppression of BCAA availability, we report significantly reduced lipid content, strongly indicating that BCAAs are important lipogenic fuels in PCa. This work also uncovered a novel compensatory mechanism, whereby fatty acid uptake is increased in response to extracellular valine deprivation. Inhibition of valine degradation via suppression of 3-hydroxyisobutyryl-CoA hydrolase (HIBCH) resulted in a selective reduction of malignant prostate cell proliferation, decreased intracellular succinate and impaired cellular respiration. In combination with a comprehensive multi-omic investigation that incorporates next-generation sequencing, metabolomics, and high-content quantitative single-cell imaging, our work highlights a novel therapeutic target for selective inhibition of metabolic reprogramming in PCa.
引用
收藏
页数:12
相关论文
共 50 条
[31]   Advances in the Study of Metabolic Reprogramming in Gastric Cancer [J].
Rong, Yu ;
Teng, Yuanyin ;
Zhou, Xiaoying .
CANCER MEDICINE, 2025, 14 (10)
[32]   ADHFE1 is a breast cancer oncogene and induces metabolic reprogramming [J].
Mishra, Prachi ;
Tang, Wei ;
Putluri, Vasanta ;
Dorsey, Tiffany H. ;
Jin, Feng ;
Wang, Fang ;
Zhu, Donewei ;
Amable, Lauren ;
Deng, Tao ;
Zhang, Shaofei ;
Killian, J. Keith ;
Wang, Yonghong ;
Minas, Tsion Z. ;
Yfantis, Harry G. ;
Lee, Dong H. ;
Sreekumar, Arun ;
Bustin, Michael ;
Liu, Wei ;
Putluri, Nagireddy ;
Ambs, Stefan .
JOURNAL OF CLINICAL INVESTIGATION, 2018, 128 (01) :323-340
[33]   Linking metabolic reprogramming to therapy resistance in cancer [J].
Morandi, Andrea ;
Indraccolo, Stefano .
BIOCHIMICA ET BIOPHYSICA ACTA-REVIEWS ON CANCER, 2017, 1868 (01) :1-6
[34]   Metabolomics of oncogene-specific metabolic reprogramming during breast cancer [J].
Dai, Chen ;
Arceo, Jennifer ;
Arnold, James ;
Sreekumar, Arun ;
Dovichi, Norman J. ;
Li, Jun ;
Littlepage, Laurie E. .
CANCER & METABOLISM, 2018, 6
[35]   Metabolic targets for potential prostate cancer therapeutics [J].
Twum-Ampofo, Jeffrey ;
Fu, De-Xue ;
Passaniti, Antonino ;
Hussain, Arif ;
Siddiqui, M. Minhaj .
CURRENT OPINION IN ONCOLOGY, 2016, 28 (03) :241-247
[36]   Targeting HIBCH to reprogram valine metabolism for the treatment of colorectal cancer [J].
Shan, Yunlong ;
Gao, Yuan ;
Jin, Wei ;
Fan, Minmin ;
Wang, Ying ;
Gu, Yanhong ;
Shan, Chenxiao ;
Sun, Lijun ;
Li, Xin ;
Yu, Biao ;
Luo, Qiong ;
Xu, Qiang .
CELL DEATH & DISEASE, 2019, 10 (8)
[37]   Targeting aberrant sialylation and fucosylation in prostate cancer cells using potent metabolic inhibitors [J].
Orozco-Moreno, Margarita ;
Visser, Eline A. ;
Hodgson, Kirsty ;
Hipgrave Ederveen, Agnes L. ;
Bastian, Kayla ;
Goode, Emily Archer ;
Ozturk, Ozden ;
Pijnenborg, Johan F. A. ;
Eerden, Nienke ;
Moons, Sam J. ;
Rossing, Emiel ;
Wang, Ning ;
de Haan, Noortje ;
Bull, Christian ;
Boltje, Thomas J. ;
Munkley, Jennifer .
GLYCOBIOLOGY, 2023, 33 (12) :1155-1171
[38]   Targeting DNA2 overcomes metabolic reprogramming in multiple myeloma [J].
Thongon, Natthakan ;
Ma, Feiyang ;
Baran, Natalia ;
Lockyer, Pamela ;
Liu, Jintan ;
Jackson, Christopher ;
Rose, Ashley ;
Furudate, Ken ;
Wildeman, Bethany ;
Marchesini, Matteo ;
Marchica, Valentina ;
Storti, Paola ;
Todaro, Giannalisa ;
Ganan-Gomez, Irene ;
Adema, Vera ;
Rodriguez-Sevilla, Juan Jose ;
Qing, Yun ;
Ha, Min Jin ;
Fonseca, Rodrigo ;
Stein, Caleb ;
Class, Caleb ;
Tan, Lin ;
Attanasio, Sergio ;
Garcia-Manero, Guillermo ;
Giuliani, Nicola ;
Berrios Nolasco, David ;
Santoni, Andrea ;
Cerchione, Claudio ;
Bueso-Ramos, Carlos ;
Konopleva, Marina ;
Lorenzi, Philip ;
Takahashi, Koichi ;
Manasanch, Elisabet ;
Sammarelli, Gabriella ;
Kanagal-Shamanna, Rashmi ;
Viale, Andrea ;
Chesi, Marta ;
Colla, Simona .
NATURE COMMUNICATIONS, 2024, 15 (01)
[39]   Metal-Phenolic Nanomedicines Targeting Fatty Acid Metabolic Reprogramming to Overcome Immunosuppression in Radiometabolic Cancer Therapy [J].
Wang, Guohao ;
Wang, Dongmei ;
Xia, Lu ;
Lian, Jiabian ;
Zhang, Qing ;
Shen, Dongyan ;
Wang, Zhanxiang ;
Dai, Yunlu .
ACS APPLIED MATERIALS & INTERFACES, 2025, 17 (05) :7478-7488
[40]   ADRB2-Targeting Therapies for Prostate Cancer [J].
Kulik, George .
CANCERS, 2019, 11 (03)