Robotics Perception and Control: Key Technologies and Applications

被引:8
作者
Luo, Jing [1 ,2 ]
Zhou, Xiangyu [1 ]
Zeng, Chao [3 ]
Jiang, Yiming [4 ]
Qi, Wen [5 ]
Xiang, Kui [1 ]
Pang, Muye [1 ]
Tang, Biwei [1 ]
机构
[1] Wuhan Univ Technol, Sch Automat, Wuhan 430070, Peoples R China
[2] Wuhan Univ Technol, Chongqing Res Inst, Chongqing 401135, Peoples R China
[3] Univ Hamburg, Dept Informat, D-22527 Hamburg, Germany
[4] Hunan Univ, Sch Robot, Changsha 410082, Peoples R China
[5] South China Univ Technol, Sch Future Technol, Guangzhou 510641, Peoples R China
关键词
robot sensors; robot control; robotic applications; MOBILE ROBOT; FORCE SENSOR; FORCE/TORQUE SENSOR; VISION SYSTEM; DESIGN; EMG; LOCALIZATION; NAVIGATION; STIFFNESS; RECOGNITION;
D O I
10.3390/mi15040531
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The integration of advanced sensor technologies has significantly propelled the dynamic development of robotics, thus inaugurating a new era in automation and artificial intelligence. Given the rapid advancements in robotics technology, its core area-robot control technology-has attracted increasing attention. Notably, sensors and sensor fusion technologies, which are considered essential for enhancing robot control technologies, have been widely and successfully applied in the field of robotics. Therefore, the integration of sensors and sensor fusion techniques with robot control technologies, which enables adaptation to various tasks in new situations, is emerging as a promising approach. This review seeks to delineate how sensors and sensor fusion technologies are combined with robot control technologies. It presents nine types of sensors used in robot control, discusses representative control methods, and summarizes their applications across various domains. Finally, this survey discusses existing challenges and potential future directions.
引用
收藏
页数:31
相关论文
共 128 条
[1]   Data Augmentation and Deep Learning Methods in Sound Classification: A Systematic Review [J].
Abayomi-Alli, Olusola O. ;
Damasevicius, Robertas ;
Qazi, Atika ;
Adedoyin-Olowe, Mariam ;
Misra, Sanjay .
ELECTRONICS, 2022, 11 (22)
[2]   Toward Detection and Localization of Instruments in Minimally Invasive Surgery [J].
Allan, Max ;
Ourselin, Sebastien ;
Thompson, Steve ;
Hawkes, David J. ;
Kelly, John ;
Stoyanov, Danail .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2013, 60 (04) :1050-1058
[3]   People Detection and Tracking Using LIDAR Sensors [J].
Alvarez-Aparicio, Claudia ;
Manuel Guerrero-Higueras, Angel ;
Javier Rodriguez-Lera, Francisco ;
Gines Clavero, Jonatan ;
Martin Rico, Francisco ;
Matellan, Vicente .
ROBOTICS, 2019, 8 (03)
[4]   Interactive Force Control Based on Multimodal Robot Skin for Physical Human-Robot Collaboration [J].
Armleder, Simon ;
Dean-Leon, Emmanuel ;
Bergner, Florian ;
Cheng, Gordon .
ADVANCED INTELLIGENT SYSTEMS, 2022, 4 (02)
[5]   Force feedback control design for nonideal teleoperators [J].
Beelen, Maarten J. ;
Naus, Gerrit J. L. ;
van de Molengraft, Marinus J. G. ;
Steinbuch, Maarten .
CONTROL ENGINEERING PRACTICE, 2013, 21 (12) :1694-1705
[6]  
Ben Atitallah B., 2021, Adv. Sens. Biomed. Appl, P47
[7]   Thermal Multisensor Fusion for Collaborative Robotics [J].
Benli, Emrah ;
Spidalieri, Richard Lee ;
Motai, Yuichi .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2019, 15 (07) :3784-3795
[8]   IMU-Based Wrist Rotation Control of a Transradial Myoelectric Prosthesis [J].
Bennett, Daniel A. ;
Goldfarb, Michael .
IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2018, 26 (02) :419-427
[9]   Combining Non Selective Gas Sensors on a Mobile Robot for Identification and Mapping of Multiple Chemical Compounds [J].
Bennetts, Victor Hernandez ;
Schaffernicht, Erik ;
Pomareda, Victor ;
Lilienthal, Achim J. ;
Marco, Santiago ;
Trincavelli, Marco .
SENSORS, 2014, 14 (09) :17331-17352
[10]   Modeling and Optimal Force Control of a Nonlinear Electrostatic Microgripper [J].
Boudaoud, Mokrane ;
Haddab, Yassine ;
Le Gorrec, Yann .
IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2013, 18 (03) :1130-1139