Attacking convolutional neural network using differential evolution

被引:20
作者
Su J. [1 ]
Vargas D.V. [2 ]
Sakurai K. [2 ]
机构
[1] Graduate School of Information Science and Electrical Engineering, Kyushu University, Fukuoka
[2] Faculty of Information Science and Electrical Engineering, Kyushu University, Fukuoka
来源
IPSJ Transactions on Computer Vision and Applications | 2019年 / 11卷 / 01期
基金
日本科学技术振兴机构;
关键词
Adversarial machine learning; Artificial intelligence; Image processing;
D O I
10.1186/s41074-019-0053-3
中图分类号
学科分类号
摘要
The output of convolutional neural networks (CNNs) has been shown to be discontinuous which can make the CNN image classifier vulnerable to small well-tuned artificial perturbation. That is, images modified by conducting such alteration (i.e., adversarial perturbation) that make little difference to the human eyes can completely change the CNN classification results. In this paper, we propose a practical attack using differential evolution (DE) for generating effective adversarial perturbations. We comprehensively evaluate the effectiveness of different types of DEs for conducting the attack on different network structures. The proposed method only modifies five pixels (i.e., few-pixel attack), and it is a black-box attack which only requires the miracle feedback of the target CNN systems. The results show that under strict constraints which simultaneously control the number of pixels changed and overall perturbation strength, attacking can achieve 72.29%, 72.30%, and 61.28% non-targeted attack success rates, with 88.68%, 83.63%, and 73.07% confidence on average, on three common types of CNNs. The attack only requires modifying five pixels with 20.44, 14.28, and 22.98 pixel value distortion. Thus, we show that current deep neural networks are also vulnerable to such simpler black-box attacks even under very limited attack conditions. © 2019, The Author(s).
引用
收藏
相关论文
共 50 条
  • [31] Emulating the estuarine morphology evolution using a deep convolutional neural network emulator based on hydrodynamic results of a numerical model
    de Melo, Willian Weber
    da Silva Pinho, Jose Luis
    Iglesias, Isabel
    JOURNAL OF HYDROINFORMATICS, 2022,
  • [32] Determining Rock Fragment Size Distribution Using a Convolutional Neural Network
    Sharifi, Elmira
    Farsangi, Mohamad Ali Ebrahimi
    Mansouri, Hamid
    Rashedi, Esmat
    RUDARSKO-GEOLOSKO-NAFTNI ZBORNIK, 2024, 39 (02): : 1 - 14
  • [33] White Blood Cells Detection and Classification Using Convolutional Neural Network
    Siala, Muaad Hammuda
    Abou El-Seoud, M. Samir
    McKee, Gerard
    INTERNET OF THINGS, INFRASTRUCTURES AND MOBILE APPLICATIONS, 2021, 1192 : 867 - 878
  • [34] Solid Waste Image Classification Using Deep Convolutional Neural Network
    Nnamoko, Nonso
    Barrowclough, Joseph
    Procter, Jack
    INFRASTRUCTURES, 2022, 7 (04)
  • [35] Bacteria Classification using Image Processing and Deep Convolutional Neural Network
    Rujichan, Chavis
    Vongserewattana, Narate
    Phasukkit, Pattarapong
    2019 12TH BIOMEDICAL ENGINEERING INTERNATIONAL CONFERENCE (BMEICON 2019), 2019,
  • [36] Deep grading of mangoes using Convolutional Neural Network and Computer Vision
    Nirmala Gururaj
    Viji Vinod
    K. Vijayakumar
    Multimedia Tools and Applications, 2023, 82 : 39525 - 39550
  • [37] Detecting breast cancer using artificial intelligence: Convolutional neural network
    Choudhury, Avishek
    Perumalla, Sunanda
    TECHNOLOGY AND HEALTH CARE, 2021, 29 (01) : 33 - 43
  • [38] Deep grading of mangoes using Convolutional Neural Network and Computer Vision
    Gururaj, Nirmala
    Vinod, Viji
    Vijayakumar, K.
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (25) : 39525 - 39550
  • [39] Contaminated Facade Identification Using Convolutional Neural Network and Image Processing
    Lee, Jiseok
    Hong, Jooyoung
    Park, Garam
    Kim, Hwa Soo
    Lee, Sungon
    Seo, TaeWon
    IEEE ACCESS, 2020, 8 (08) : 180010 - 180021
  • [40] Tropical Cyclone Intensity Estimation Using a Deep Convolutional Neural Network
    Pradhan, Ritesh
    Aygun, Ramazan S.
    Maskey, Manil
    Ramachandran, Rahul
    Cecil, Daniel J.
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (02) : 692 - 702