Femtosecond Laser Precision Engineering: From Micron, Submicron, to Nanoscale

被引:187
作者
Lin, Zhenyuan [1 ]
Hong, Minghui [1 ]
机构
[1] Natl Univ Singapore, Dept Elect & Comp Engn, 4 Engn Dr 3, Singapore 117576, Singapore
来源
ULTRAFAST SCIENCE | 2021年 / 2021卷
关键词
PLASMA-ASSISTED ABLATION; WAVE-GUIDE; GLASS; FABRICATION; IRRADIATION; RESOLUTION; SURFACES; PULSES; MICROFABRICATION; SEMICONDUCTORS;
D O I
10.34133/2021/9783514
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
As a noncontact strategy with flexible tools and high efficiency, laser precision engineering is a significant advanced processing way for high-quality micro-/nanostructure fabrication, especially to achieve novel functional photoelectric structures and devices. For the microscale creation, several femtosecond laser fabrication methods, including multiphoton absorption, laser-induced plasma-assisted ablation, and incubation effect have been developed. Meanwhile, the femtosecond laser can be combined with microlens arrays and interference lithography techniques to achieve the structures in submicron scales. Down to nanoscale feature sizes, advanced processing strategies, such as near-field scanning optical microscope, atomic force microscope, and microsphere, are applied in femtosecond laser processing and the minimum nanostructure creation has been pushed down to similar to 25 nm due to near-field effect. The most fascinating femtosecond laser precision engineering is the possibility of large-area, high-throughput, and far-field nanofabrication. In combination with special strategies, including dual femtosecond laser beam irradiation, similar to 15nm nanostructuring can be achieved directly on silicon surfaces in far field and in ambient air. The challenges and perspectives in the femtosecond laser precision engineering are also discussed.
引用
收藏
页数:22
相关论文
共 151 条
[1]  
Abbe E., 1873, Arch. Mikrosk. Anat., V9, P413, DOI [10.1007/BF02956173, DOI 10.1007/BF02956173]
[2]   Femtosecond laser micromachining of diamond: Current research status, applications and challenges [J].
Ali, Bakhtiar ;
Litvinyuk, Igor V. ;
Rybachuk, Maksym .
CARBON, 2021, 179 :209-226
[3]   Femtosecond laser induced surface swelling in poly-methyl methacrylate [J].
Baset, Farhana ;
Popov, Konstantin ;
Villafranca, Ana ;
Guay, Jean-Michel ;
Al-Rekabi, Zeinab ;
Pelling, Andrew E. ;
Ramunno, Lora ;
Bhardwaj, Ravi .
OPTICS EXPRESS, 2013, 21 (10) :12527-12538
[4]   Nanocrystalline lanthanum boride thin films by femtosecond pulsed laser deposition as efficient emitters in hybrid thermionic-photovoltaic energy converters [J].
Bellucci, A. ;
Mastellone, M. ;
Girolami, M. ;
Serpente, V. ;
Generosi, A. ;
Paci, B. ;
Mezzi, A. ;
Kaciulis, S. ;
Carducci, R. ;
Polini, R. ;
Orlando, S. ;
Santagata, A. ;
De Bonis, A. ;
Meucci, M. ;
Mercatelli, L. ;
Sani, E. ;
Trucchi, D. M. .
APPLIED SURFACE SCIENCE, 2020, 513
[5]   Holes generation in glass using large spot femtosecond laser pulses [J].
Berg, Yuval ;
Kotler, Zvi ;
Shacham-Diamand, Yosi .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2018, 28 (03)
[6]   Approaches for Achieving Superlubricity in Two-Dimensional Materials [J].
Berman, Diana ;
Erdemir, Ali ;
Sumant, Anirudha V. .
ACS NANO, 2018, 12 (03) :2122-2137
[7]   Optically produced arrays of planar nanostructures inside fused silica [J].
Bhardwaj, VR ;
Simova, E ;
Rajeev, PP ;
Hnatovsky, C ;
Taylor, RS ;
Rayner, DM ;
Corkum, PB .
PHYSICAL REVIEW LETTERS, 2006, 96 (05)
[8]  
Bloembergen N., 1993, AIP Conference Proceedings, P3, DOI 10.1063/1.44887
[9]   Laser-Induced Periodic Surface Structures-A Scientific Evergreen [J].
Bonse, Joern ;
Hoehm, Sandra ;
Kirner, Sabrina V. ;
Rosenfeld, Arkadi ;
Krueger, Joerg .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2017, 23 (03) :109-123
[10]   On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses [J].
Bonse, Joern ;
Rosenfeld, Arkadi ;
Krueger, Joerg .
JOURNAL OF APPLIED PHYSICS, 2009, 106 (10)