A novel temperature prediction method in complex indoor environments based on parameter estimation

被引:0
作者
Wang, Zhi [1 ]
Yang, Junqing [1 ]
Chen, Erkui [1 ]
Shen, Shitong [1 ]
机构
[1] Shandong Univ Sci & Technol, Coll Elect Engn & Automat, Qingdao 266590, Shandong, Peoples R China
关键词
Boussinesq approximation; complex indoor environments; heat transfer; parameter estimation; temperature prediction; AIR-TEMPERATURE; HEAT-SOURCE; FLUID-FLOW; CONVECTION; NUMBER; MODEL;
D O I
10.1080/10407782.2024.2334928
中图分类号
O414.1 [热力学];
学科分类号
摘要
This article proposes a novel temperature prediction technique for complex indoor environments based on parameter estimation. The method utilizes the Boussinesq approximation to establish a thermal model and estimate key parameters including pressure terms, heat transfer coefficients, and thermal diffusivity. An approximate approach is adopted to simulate the thermal dynamics of an indoor space. By comparing simulation results under an initial temperature with actual measurements, accurate parameter values are obtained. The estimated parameters can then be applied to achieve high-accuracy temperature prediction given varying initial conditions in the same environment. Moreover, the method can be formulated into a state-space model, enabling offline optimal temperature control. Through identifying the governing parameters via data-driven modeling, it provides an effective engineering tool for analyzing heat transfer and regulating temperature in intricate indoor settings. Rigorous derivation and sufficient validation demonstrate the reliability of this method. Given its potential in fields like architecture design and thermal engineering, this technique offers valuable impacts and insights for temperature management in enclosed environments.
引用
收藏
页数:17
相关论文
共 32 条
[1]   Fourier [J].
Adiutori, EF .
MECHANICAL ENGINEERING, 2005, 127 (08) :30-31
[2]   Thermal management mechanism employing transparent nanostructures for winter and summer seasons for indoor environments [J].
Alsharari, Meshari ;
Muheki, Jonas ;
Armghan, Ammar ;
Aliqab, Khaled ;
Surve, Jaymit ;
Patel, Shobhit K. .
INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2023, 193
[3]   Autoregressive neural networks with exogenous variables for indoor temperature prediction in buildings [J].
Delcroix, Benoit ;
Le Ny, Jerome ;
Bernier, Michel ;
Azam, Muhammad ;
Qu, Bingrui ;
Venne, Jean-Simon .
BUILDING SIMULATION, 2021, 14 (01) :165-178
[4]   Indoor air quality guidelines from across the world: An appraisal considering energy saving, health, productivity, and comfort [J].
Dimitroulopoulou, Sani ;
Dudzinska, Marzenna R. ;
Gunnarsen, Lars ;
Hagerhed, Linda ;
Maula, Henna ;
Singh, Raja ;
Toyinbo, Oluyemi ;
Haverinen-Shaughnessy, Ulla .
ENVIRONMENT INTERNATIONAL, 2023, 178
[5]   A genetic algorithm approach for parameter estimation in vapour-liquid thermodynamic modelling problems [J].
Erodotou, Panagiotis ;
Voutsas, Epaminondas ;
Sarimveis, Haralambos .
COMPUTERS & CHEMICAL ENGINEERING, 2020, 134 (134)
[6]  
Ghedhab Mohamed Elamine, 2020, E3S Web of Conferences, V170, DOI 10.1051/e3sconf/202017001005
[7]   Thermal circuits assembling and state-space extraction for modelling heat transfer in buildings [J].
Ghiaus, Christian ;
Ahmad, Naveed .
ENERGY, 2020, 195
[8]   Dynamic heating control measured and simulated effects on power reduction, energy and indoor air temperature in an old apartment building with district heating [J].
Hajian, Hatef ;
Ahmed, Kaiser ;
Kurnitski, Jarek .
ENERGY AND BUILDINGS, 2022, 268
[9]   Fractional-Order PID Controllers for Temperature Control: A Review [J].
Jamil, Adeel Ahmad ;
Tu, Wen Fu ;
Ali, Syed Wajhat ;
Terriche, Yacine ;
Guerrero, Josep M. .
ENERGIES, 2022, 15 (10)
[10]   A review of metal-organic frameworks (MOFs) as energy-efficient desiccants for adsorption driven heat-transformation applications [J].
Karmakar, Avishek ;
Prabakaran, Vivekh ;
Zhao, Dan ;
Chua, Kian Jon .
APPLIED ENERGY, 2020, 269